This is a unique type of book; at least, I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel, developing on three levels, and imbued with both educational and philosophical/moral issues. If this summary description does not help understanding the particular character and allure of the book, possibly a more detailed explanation will be found useful. One of the primary goals of the author is to interest readers-in particular, young mathematiciansorpossiblypre-mathematicians-inthefascinatingworldofelegant and easily understandable problems, for which no particular mathematical kno- edge is necessary, but which are very far from being easily solved. In fact, the prototype of such problems is the following: If each point of the plane is to be given a color, how many colors do we need if every two points at unit distance are to receive distinct colors? More than half a century ago it was established that the least number of colors needed for such a coloring is either 4, or 5, or 6 or 7. Well, which is it? Despite efforts by a legion of very bright people-many of whom developed whole branches of mathematics and solved problems that seemed much harder-not a single advance towards the answer has been made. This mystery, and scores of other similarly simple questions, form one level of mysteries explored. In doing this, the author presents a whole lot of attractive results in an engaging way, and with increasing level of depth.
Rezensionen / Stimmen
From the reviews:
"It contains a range of combinatorial colouring problems, while those interested in the recent history or the sociology of mathematics will be entertained by lively accounts of the combinatorialists who created and worked on them. . The book is generally well written and presented, with good diagrams and layout . . a useful and engaging book." (Robin Wilson, LMS Newsletter, November, 2009)
"This book contains much math of interest and pointers to more math of interest. . This is a Fantastic Book!. . The upward closure of the union of the following people: (1) an excellent high school student, (2) a very good college math major, (3) a good grad student in math or math-related field, (4) a fair PhD in combinatories, or (5) a bad math professor. . Anyone who is interested in math or history of math. This book has plenty of both." (William Gasarch, SIGACT News, Vol. 40 (3), 2010)
"Soifer does a fine job in collating a huge range of sources . with many interesting nuggets and, where necessary, a real determination to set the historical record straight in terms of the appellation of conjectures and theorems. . The mathematical colouring book is attractively produced and very readable. . book is likely to be of primary interest to those seeking a historically aware, up-to-date introductory survey of an engaging, and still emerging, field of combinatorial mathematics." (Nick Lord, The Mathematical Gazette, Vol. 95 (532), March, 2011)
"This very nicely presented book, lovingly prepared by the author over a period of 18 years, studies problems involving colored objects, and the Ramsey theory that such problems are imbedded into. . recommend this book, both for mathematicians and for those who wish to learn more about mathematicians and their subject." (Arthur T. White, Zentralblatt MATH, Vol. 1221, 2011)