In the second edition of this popular and successful text the number of exercises has been drastically increased (to a minimum of 25 per chapter); also a new chapter on the Jordan normal form has been added. These changes do not affect the character of the book as a compact but mathematically clean introduction to linear algebra with particular emphasis on topics that are used in the theory of differential equations.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Lower undergraduate
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 21 mm
Gewicht
ISBN-13
978-1-4684-0254-4 (9781468402544)
DOI
10.1007/978-1-4684-0252-0
Schweitzer Klassifikation
1 Vectors in the plane and space.- 2 Vector spaces.- 3 Subspaces.- 4 Examples of vector spaces.- 5 Linear independence and dependence.- 6 Bases and finite-dimensional vector spaces.- 7 The elements of vector spaces: a summing up.- 8 Linear transformations.- 9 Linear transformations: some numerical examples.- 10 Matrices and linear transformations.- 11 Matrices.- 12 Representing linear transformations by matrices.- 12bis More on representing linear transformations by matrices.- 13 Systems of linear equations.- 14 The elements of eigenvalue and eigenvector theory.- 14bis Multilinear algebra: determinants.- 15 Inner product spaces.- 16 The spectral theorem and quadratic forms.- 17 Jordan canonical form.- 18 Applications to linear differential equations.- List of notations.