Automorphic functions on the upper half plane, especially modular functions.- Elliptic curves and the fundamental theorems of the classical theory of complex multiplication.- Relation between the points of finite order on an elliptic curve and the modular functions of higher level.- Abelian varieties and siegel modular functions.- The endomorphism-ring of an abelian variety; the field of moduli of an abelian variety with many complex multiplications.- The class-field-theoretical characterization of K' (?(z)).- A further method of constructing class fields.- The hasse zeta function of an algebraic curve.- Infinite galois extensions with l-adic representations.- Further generalization and concluding remarks.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 5 mm
Gewicht
ISBN-13
978-3-540-04224-2 (9783540042242)
DOI
Schweitzer Klassifikation
Automorphic functions on the upper half plane, especially modular functions.- Elliptic curves and the fundamental theorems of the classical theory of complex multiplication.- Relation between the points of finite order on an elliptic curve and the modular functions of higher level.- Abelian varieties and siegel modular functions.- The endomorphism-ring of an abelian variety; the field of moduli of an abelian variety with many complex multiplications.- The class-field-theoretical characterization of K' (?(z)).- A further method of constructing class fields.- The hasse zeta function of an algebraic curve.- Infinite galois extensions with l-adic representations.- Further generalization and concluding remarks.