The present book is an English translation of Algebre Locale - Multiplicites published by Springer-Verlag as no. 11 of the Lecture Notes series. The original text was based on a set of lectures, given at the College de France in 1957-1958, and written up by Pierre Gabriel. Its aim was to give a short account of Commutative Algebra, with emphasis on the following topics: a) Modules (as opposed to Rings, which were thought to be the only subject of Commutative Algebra, before the emergence of sheaf theory in the 1950s); b) H omological methods, a la Cartan-Eilenberg; c) Intersection multiplicities, viewed as Euler-Poincare characteristics. The English translation, done with great care by Chee Whye Chin, differs from the original in the following aspects: - The terminology has been brought up to date (e.g. "cohomological dimension" has been replaced by the now customary "depth"). I have rewritten a few proofs and clarified (or so I hope) a few more. - A section on graded algebras has been added (App. III to Chap. IV). - New references have been given, especially to other books on Commu- tive Algebra: Bourbaki (whose Chap. X has now appeared, after a 40-year wait) , Eisenbud, Matsumura, Roberts, .... I hope that these changes will make the text easier to read, without changing its informal "Lecture Notes" character.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 9 mm
Gewicht
ISBN-13
978-3-642-08590-1 (9783642085901)
DOI
10.1007/978-3-662-04203-8
Schweitzer Klassifikation
I. Prime Ideals and Localization.- §1. Notation and definitions.- §2. Nakayama's lemma.- §3. Localization.- §4. Noetherian rings and modules.- §5. Spectrum.- §6. The noetherian case.- §7. Associated prime ideals.- §8. Primary decompositions.- II. Tools.- A: Filtrations and Gradings.- B: Hilbert-Samuel Polynomials.- III. Dimension Theory.- A: Dimension of Integral Extensions.- B: Dimension in Noetherian Rings.- C: Normal Rings.- D: Polynomial Rings.- IV. Homological Dimension and Depth.- A: The Koszul Complex.- B: Cohen-Macaulay Modules.- C: Homological Dimension and Noetherian Modules.- D: Regular Rings.- Appendix I: Minimal Resolutions.- Appendix II: Positivity of Higher Euler-Poincaré Characteristics.- Appendix III: Graded-polynomial Algebras.- V. Multiplicities.- A: Multiplicity of a Module.- B: Intersection Multiplicity of Two Modules.- C: Connection with Algebraic Geometry.- Index of Notation.