Researchers, postgraduate students and professionals in control engineering, applied mathematics and theoretical computer science will find this book presents state-of-the-art concepts, methods, tools and new research for analyzing and describing hybrid dynamical systems. Advanced engineering practitioners and applied researchers working in areas of control engineering, signal processing, communications, and fault detection will find this book an up-to-date resource.
Rezensionen / Stimmen
"The book is a self-contained text assuming only a basic mathematical knowledge of modern control theory. It is an excellent up-to-date authoritative reference covering original results with complete mathematical proofs and illustrative examples. The monograph is intended both for researchers and advanced postgraduate students working in the areas of control engineering, theoretical computer science, and applied mathematics interested in the emerging field of hybrid dynamic systems." -Zentralblatt Math
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 14 mm
Gewicht
ISBN-13
978-0-8176-4224-2 (9780817642242)
DOI
10.1007/978-1-4612-0107-6
Schweitzer Klassifikation
1 Introduction.- 1.1 Hybrid Dynamical Systems.- 1.2 Controller and Sensor Switching Problems.- 1.3 Notation.- 2 Quadratic State Feedback Stabilizability via Controller Switching.- 2.1 Introduction.- 2.2 Quadratic Stabilizability via Asynchronous Controller Switching.- 2.3 The S-Procedure.- 2.4 A Sufficient Condition for Quadratic Stabilizability.- 2.5 The Case of Two Basic Controllers.- 2.6 Quadratic Stabilizability via Synchronous Switching.- 2.7 Illustrative Example.- 2.8 Proof of Theorem 2.3.1.- 3 Robust State Feedback Stabilizability with a Quadratic Storage Function and Controller Switching.- 3.1 Introduction.- 3.2 Uncertain Systems with Norm-Bounded Uncertainty.- 3.3 Robust Stabilizability via Asynchronous Controller Switching.- 3.4 Robust Stabilizability via Synchronous Switching.- 3.5 Illustrative Examples.- 4 H? Control with Synchronous Controller Switching.- 4.1 Introduction.- 4.2 State Feedback H? Control Problem.- 4.3 Output Feedback H? Control Problem.- 4.4 Illustrative Example.- 4.5 Output Feedback H? Control over Infinite Time.- 5 Absolute Stabilizability via Synchronous Controller Switching.- 5.1 Introduction.- 5.2 Uncertain Systems with Integral Quadratic Constraints.- 5.3 State Feedback Stabilizability via Synchronous Controller Switching.- 5.4 Output Feedback Stabilizability via Synchronous Controller Switching.- 5.5 A Necessary and Sufficient Condition for Output Feedback Stabilizability.- 5.6 A Constructive Method for Output Feedback Absolute Stabilization.- 5.7 Systems with Structured Uncertainty.- 5.8 Illustrative Example.- 6. Robust Output Feedback Controllability via Synchronous Controller Switching.- 6.1 Introduction.- 6.2 Robust Output Feedback Controllability.- 6.3 A Necessary and Sufficient Condition for Robust Controllability.- 7Optimal Robust State Estimation via Sensor Switching.- 7.1 Introduction.- 7.2 Robust Observability of Uncertain Linear Systems.- 7.3 Optimal Robust Sensor Scheduling.- 7.4 Model Predictive Sensor Scheduling.- 8 Almost Optimal Linear Quadratic Control Using Stable Switched Controllers.- 8.1 Introduction.- 8.2 Optimal Control via Stable Output Feedback Controllers.- 8.3 Construction of Almost Optimal Stable Switched Controller.- 9 Simultaneous Strong Stabilization of Linear Time-Varying Systems Using Switched Controllers.- 9.1 Introduction.- 9.2 The Problem of Simultaneous Strong Stabilization.- 9.3 A Method for Simultaneous Strong Stabilization.- References.