In this thesis, the author considers quantum gravity to investigate the mysterious origin of our universe and its mechanisms. He and his collaborators have greatly improved the analyticity of two models: causal dynamical triangulations (CDT) and n-DBI gravity, with the space-time foliation which is one common factor shared by these two separate models. In the first part, the analytic method of coupling matters to CDT in 2-dimensional toy models is proposed to uncover the underlying mechanisms of the universe and to remove ambiguities remaining in CDT. As a result, the wave function of the 2-dimensional universe where matters are coupled is derived. The behavior of the wave function reveals that the Hausdorff dimension can be changed when the matter is non-unitary. In the second part, the n-DBI gravity model is considered. The author mainly investigates two effects driven by the space-time foliation: the appearance of a new conserved charge in black holes and an extra scalar mode of the graviton. The former implies a breakdown of the black-hole uniqueness theorem while the latter does not show any pathological behavior.
Reihe
Thesis
Dissertationsschrift
2013
Nagoya University
Auflage
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
4
12 farbige Abbildungen, 4 s/w Abbildungen
XIII, 100 p. 16 illus., 12 illus. in color.
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 13 mm
Gewicht
ISBN-13
978-4-431-54946-8 (9784431549468)
DOI
10.1007/978-4-431-54947-5
Schweitzer Klassifikation
Dr.Yuki Sato
Nagoya University
Department of Physics
Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
Introduction.- Causal Dynamical Triangulation.- n-DBI Gravity.- Summary.- Appendices.