Nanomaterials have the potential to contribute to more sustainable manufacturing through cleaner, less wasteful production processes and can substitute conventional materials, leading to savings in raw materials and energy. This book provides an innovative perspective by establishing connections between the subject areas associated with nanotechnology and by bridging academic and industrial research. It also covers methods for assessing the sustainability of nanotechnology-based products and processes using life-cycle analysis, taking into account material and energy consumption during manufacture, use, and final disposal and/or recycling.
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Academic and Postgraduate
Produkt-Hinweis
Illustrationen
90 s/w Abbildungen, 8 farbige Abbildungen, 9 s/w Tabellen
9 Tables, black and white; 8 Illustrations, color; 90 Illustrations, black and white
Maße
Höhe: 234 mm
Breite: 157 mm
Dicke: 23 mm
Gewicht
ISBN-13
978-1-4822-1482-6 (9781482214826)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
David G. Rickerby, PhD, is a senior scientific officer in the Institute for Environment and Sustainability at the European Commission Joint Research Centre, Ispra, Italy. After earning a doctoral degree from the University of Cambridge, he carried out postdoctoral research at the Pennsylvania State University. His present research interests involve evaluation of the potential risks and benefits of nanotechnologies, including development of risk assessment tools and methodologies. He was one of the group of international experts who coauthored a chapter on nanotechnology and the environment for the UNEP GEO Year Book and is a member of the OECD Working Party on Manufactured Nanomaterials, Steering Group 9 on the Environmentally Sustainable Use of Nanotechnology.
Introduction. Nanotechnology in Electronics. Photovoltaics and Nanotechnology: From Innovation to Industry. How Nanotechnologies Can Enhance Sustainability in the Agrifood Sector. Biological Production of Nanocellulose and Potential Application in Agricultural and Forest Product Industry. Applications of Nanotechnology in Aerospace. Applications of Nanomaterials in Fuel Cells. Nanostructured Metal Oxide Catalysts. Solar Photocatalytic Drinking Water Treatment for Developing Countries. Applications of Nanotechnology in the Building Industry . Anticipatory Life-Cycle Assessment of SWCNT-Enabled Lithium Ion Batteries. Life-Cycle Assessment of Nanotechnology-Based Applications. Index.