The overall theme of this volume is the appropriation and integration of ancient sciences, whether Greek or Indian, into the scientific thought of the classical Islamic world, and the impact this had on the development of Arabic scientific thought itself. The first articles are concerned with the history of optics, in particular theories of lenses and anaclastics, and use newly-discovered texts to demonstrate the early achievements of the Arabs in these fields. Their use of mathematics in the development of experimental optics is also emphasized. In the following articles Professor Rashed turns to the history of mathematics itself - with studies on the Arabic neo-Archimedean tradition, and on research into number theory and Diophantine analysis - and to problems in the philosophy of mathematics as dealt with by Maimonides, Ibn al-Haytham and Avicenna.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
figures, plates, tables, index
Maße
Höhe: 157 mm
Breite: 231 mm
Gewicht
ISBN-13
978-0-86078-330-5 (9780860783305)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation
Preface; problems of transmission of Greek scientific thought into Arabic - examples from mathematics and optics; optique geometrique et doctrine optique chez Ibn al-Haytham; le modele de la sphere transparente et l'explication de l'arc-en-ciel - Ibn Al-Haytham, al-Farisi; lumiere et vision - l'application des mathematiques dans l'optique d'Alhazen; le discours de la lumiere d'Ibn al-Haytham (Alhazen); a pioneer in anaclastics - Ibn Sahl on burning mirrors and lenses; transmissions et recommencements - l'example de l'optique; la periodisation des mathematiques classiques; Archimede et les mathematiques arabes; diophante d'Alexandrie; Ibn al-Haytham et les nombres parfaits; Al-Samaw'al, al-Biruni et Brahmagupta - sur les methodes d'interpolation; Al-Sijzi et Maimonide - commentaire mathematique et philosophique de la proposition Il-14 des "Coniques" d'Apollonius; analyse et synthese chez Ibn al-Haytham; mathematiques et philosophie chez Avicenne.