High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.
Reihe
Auflage
Softcover reprint of hardcover 1st ed. 1998
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 37 mm
Gewicht
ISBN-13
978-3-642-08329-7 (9783642083297)
DOI
10.1007/978-3-662-12011-8
Schweitzer Klassifikation
Algebraic K-theory.- Finite structures.- Geometric bands.- Algebraic bands.- Localization and completion in K-theory.- K-theory of polynomial extensions.- K-theory of formal power series.- Algebraic transversality.- Finite domination and Novikov homology.- Noncommutative localization.- Endomorphism K-theory.- The characteristic polynomial.- Primary K-theory.- Automorphism K-theory.- Witt vectors.- The fibering obstruction.- Reidemeister torsion.- Alexander polynomials.- K-theory of Dedekind rings.- K-theory of function fields.- Algebraic L-theory.- Algebraic Poincaré complexes.- Codimension q surgery.- Codimension 2 surgery.- Manifold and geometric Poincaré bordism of X × S 1.- L-theory of Laurent extensions.- Localization and completion in L-theory.- Asymmetric L-theory.- Framed codimension 2 surgery.- Automorphism L-theory.- Open books.- Twisted doubles.- Isometric L-theory.- Seifert and Blanchfield complexes.- Knot theory.- Endomorphism L-theory.- Primary L-theory.- Almost symmetric L-theory.- L-theory of fields and rational localization.- L-theory of Dedekind rings.- L-theory of function fields.- The multisignature.- Coupling invariants.- The knot cobordism groups.