The $0$-calculus on a manifold with boundary is a micro-localization of the Lie algebra of vector fields that vanish at the boundary. It has been used by Mazzeo, Melrose to study the Laplacian of a conformally compact metric. We give a complete characterization of those $0$-pseudodifferential operators that are Fredholm between appropriate weighted Sobolev spaces, and describe $C^{*}$-algebras that are generated by $0$-pseudodifferential operators. An important step is understanding the so-called reduced normal operator, or, almost equivalently, the infinite dimensional irreducible representations of $0$-pseudodifferential operators. Since the $0$-calculus itself is not closed under holomorphic functional calculus, we construct submultiplicative Frechet $*$-algebras that contain and share many properties with the $0$-calculus, and are stable under holomorphic functional calculus ($\Psi^{*}$-algebras in the sense of Gramsch). There are relations to elliptic boundary value problems.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
ISBN-13
978-0-8218-3272-1 (9780821832721)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Part 1. Fredholm theory for $0$-pseudodifferential operators: Review of basic objects of $0$-geometry The small $0$-calculus and the $0$-calculus with bounds The $b$-$c$-calculus on an interval The reduced normal operator Weighted $0$-Sobolev spaces Fredholm theory for $0$-pseudodifferential operators Part 2. Algebras of $0$-pseudodifferential operators of order $0$: $C^*$-algebras of $0$-pseudodifferential operators $\Psi^*$-algebras of $0$-pseudodifferential operators Appendix A. Spaces of conormal functions Bibliography Notations Index.