Quantum groups and quantum algebras as well as non-commutative differential geometry are important in mathematics and considered to be useful tools for model building in statistical and quantum physics. This book, addressing scientists and postgraduates, contains a detailed and rather complete presentation of the algebraic framework. Introductory chapters deal with background material such as Lie and Hopf superalgebras, Lie super-bialgebras, or formal power series. Great care was taken to present a reliable collection of formulae and to unify the notation, making this volume a useful work of reference for mathematicians and mathematical physicists.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
bibliography, notation, index
Maße
Höhe: 23.5 cm
Breite: 15.5 cm
Gewicht
ISBN-13
978-3-540-60587-4 (9783540605874)
DOI
10.1007/978-3-540-47801-0
Schweitzer Klassifikation
Lie Algebras.- Lie Superalgebras.- Coalgebras and Z2-Graded Hopf Algebras.- Formal Power Series with Homogeneous Relations.- Z2-Graded Lie-Cartan Pairs.- Real Lie-Hopf Superalgebras.- Universal Differential Envelope.- Quantum Groups.- Categorial Viewpoint.