During the past decade our understanding of plasma physics has witnessed an explosive growth due to research in two areas: work directed toward controlled nuclear fusion and work in space physics. This book addresses the growing need to apply these complementary discoveries to astrophysics. Today plasma is recognized as the key element to understanding the generation of magnetic fields in planets, stars and galaxies, the accel- eration and transport of cosmic rays, and many other phenomena occurring in interstellar space, in radio galaxies, stellar atmospheres, quasars, and so forth.
Sprache
Verlagsort
Zielgruppe
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Maße
Gewicht
ISBN-13
978-0-387-97575-7 (9780387975757)
DOI
10.1007/978-1-4612-2780-9
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
1. Cosmic Plasma Fundamentals.- 1.1 Plasma.- 1.2 The Physical Sizes and Characteristics of Plasmas in the Universe.- 1.2.1 Plasmas on Earth.- 1.2.2 Near-Earth Plasmas.- 1.2.3 Plasmas in the Solar System.- 1.2.4 Transition Regions in the Solar System.- 1.2.5 Solar, Stellar, and Interstellar Plasmas.- 1.2.6 Galactic and Extragalactic Plasmas.- 1.3 Regions of Applicability of Plasma Physics.- 1.4 Power Generation and Transmission.- 1.5 Electrical Discharges in Cosmic Plasma.- 1.6 Particle Acceleration in Cosmic Plasma.- 1.6.1 Acceleration of Electric Charges.- 1.6.2 Collective Ion Acceleration.- 1.7 Plasma Pinches and Instabilities.- 1.7.1 The Bennett Pinch.- 1.7.2 The Force-Free Configuration.- 1.7.3 The Diocotron Instability.- 1.7.4 Critical Ionization Velocity.- 1.8 Diagnosing Cosmic Plasmas.- 1.8.1 The Electromagnetic Spectrum.- 1.8.2 In Situ Space Probes.- 2. Birkeland Currents in Cosmic Plasma.- 2.1 History of Birkeland Currents.- 2.2 Field-Aligned Currents in Laboratory Plasma.- 2.3 Field-Aligned Currents in Astrophysical Plasmas.- 2.4 Basic Equations of Magnetohydrodynamics.- 2.4.1 General Plasma Fluid Equations.- 2.4.2 Magnetic Reynolds and Lundquist Numbers.- 2.5 The Generalized Bennett Relation.- 2.5.1 The Bennett Relation.- 2.5.2 Alfvén Limiting Current.- 2.5.3 Charge Neutralized Beam Propagation.- 2.5.4 Current Neutralized Beam Propagation.- 2.5.5 Discussion.- 2.5.6 Beam Propagation Along an External Magnetic Field.- 2.5.7 Schönherr Whirl Stabilization.- 2.5.8 The Carlqvist Relation.- 2.5.9 The Cylindrical Pinch.- 2.5.10 The Sheet Pinch.- 2.6 Application of the Carlqvist Relation.- 2.6.1 Birkeland Currents in Earth's Magnetosphere.- 2.6.2 Currents in the Solar Atmosphere.- 2.6.3 Heliospheric Currents.- 2.6.4 Currents in the Interstellar Medium.- 2.6.5 Currents in the Galactic Medium.- 2.6.6 Currents in the Intergalactic Medium.- 2.7 Basic Fluid and Beam Instabilities.- 2.7.1 Jeans Condition for Gravitational Instability.- 2.7.2 Two-Stream (Buneman) Instability.- 2.7.3 Sausage and Kink Instabilities.- 2.8 Laboratory Simulation of Cosmic Plasma Processes.- 2.8.1 High-Current Plasma Pinches.- 2.8.2 Laboratory Aurora Simulations.- 2.9 The Particle-in-Cell Simulation of Beams and Birkeland Currents.- 2.9.1 Charge and Current Neutralized Beam Propagation in Plasma.- 2.9.2 Relativistic and Mildly Relativistic Beam Propagation in Plasma.- 2.9.3 Propagation of a Relativistic Beam Bunch Through Plasma.- 2.9.4 Beam Filamentation.- 2.9.5 Dynamical Evolution of a Narrow Birkeland Filament.- 2.9.6 Vortex Formation in Thin Cylindrical Electron Beams Propagating Along a Magnetic Field.- 2.9.7 Charge-Neutralized Relativistic Electron Beam Propagation Along a Magnetic Field.- 2.9.8 Numerical Aurora Simulations.- 3. Biot-Savart Law in Cosmic Plasma.- 3.1 History of Magnetism.- 3.2 The Magnetic Interaction of Steady Line Currents.- 3.3 The Magnetic Induction Field.- 3.3.1 Field from an Infinite Conductor of Finite Radius.- 3.3.2 Force Between Two Infinite Conductors.- 3.4 The Vector Potential.- 3.4.1 Field from a Circular Loop and Force Between Two Circular Loops.- 3.4.2 Force Between Two Circular Loops Lying in a Plane.- 3.5 Quasi-Stationary Magnetic Fields.- 3.5.1 Faraday's Law.- 3.5.2 Motion Induced Electric Fields.- 3.5.3 Faraday Disk Dynamo.- 3.6 Inductance.- 3.7 Storage of Magnetic Energy.- 3.7.1 Energy in a System of Current Loops.- 3.7.2 In Situ Storage in Force Free Magnetic Field Configurations.- 3.8 Forces as Derivatives of Coefficients of Inductance.- 3.9 Measurement of Magnetic Fields in Laboratory Plasmas.- 3.10 Particle-in-Cell Simulation of Interacting Curents.- 3.10.1 Simulation Setup.- 3.10.2 Initial Motion of Current Filaments.- 3.10.3 Polarization Forces.- 3.10.4 Magnetic Energy Distribution and Magnetic Isobars.- 3.10.5 Net Motion.- 3.10.6 "Doubleness" in Current-Conducting Plasmas.- 3.11 Magnetic Fields in Cosmic Dimensioned Plasma.- 3.11.1 Measurement of Galactic Magnetic Fields.- 3.11.2 Milky Way Galaxy.- 3.11.3 Spiral Galaxies.- 3.11.4 Rotational Velocities of Spiral Galaxies.- 3.11.5 Elliptical Galaxies.- 3.11.6 Intergalactic Magnetic Fields.- 4. Electric Fields in Cosmic Plasma.- 4.1 Electric Fields.- 4.2 Measurement of Electric Fields.- 4.3 Magnetic Field Aligned Electric Fields.- 4.3.1 Collisionless Thermoelectric Effect.- 4.3.2 Magnetic Mirror Effect.- 4.3.3 Electrostatic Shocks.- 4.3.4 Electric Double Layers.- 4.4 Magnetospheric Electric Fields.- 4.4.1 The Plasmasphere.- 4.4.2 The Plasmasheet.- 4.4.3 The Neutral Sheet.- 4.4.4 The Magnetotail.- 4.4.5 The Magnetopause.- 4.4.6 The Auroral Acceleration Region.- 4.4.7 Global Distributions of Auroral Electric Fields.- 4.5 Outstanding Questions.- 4.6 Phenomena Associated with Electric Fields.- 4.6.1 Surface Discharges.- 4.6.2 Plasma Gun Arc Discharges.- 4.6.3 Marklund Convection and Separation of Elements.- 4.6.4 Particle Acceleration and Runaway.- 4.6.5 Field-Aligned Electric Fields as the Source of Cosmic Rays.- 5. Double Layers in Astrophysics.- 5.1 General Description of Double Layers.- 5.2 The Time-Independent Double Layer.- 5.2.1 One-Dimensional Model.- 5.2.2 Ratio of the Current Densities.- 5.2.3 The Potential Drop.- 5.2.4 Structure of the Double Layer.- 5.2.5 Kinetic Description.- 5.3 Particle-in-Cell Simulation of Double Layers.- 5.3.1 Simulations of the Two-Stream Instability.- 5.3.2 Simulations of Double Layers.- 5.4 Double Layers in Current Filaments.- 5.5 Basic Properties of Double Layers.- 5.5.1 Double Layers as a Surface Phenomena.- 5.5.2 Noise and Fluctuations in Double Layers.- 5.5.3 Exploding Double Layers.- 5.5.4 Oblique Double Layers.- 5.6 Examples of Cosmic Double Layers.- 5.6.1 Double Layers in the Auroral Circuit.- 5.6.2 Solar Flares.- 5.6.3 Double Radio Galaxies and Quasars.- 5.6.4 Double Layers as a Source of Cosmic Radiation.- 6. Synchrotron Radiation.- 6.1 Theory of Radiation from an Accelerated Charge.- 6.1.1 The Induction Fields.- 6.1.2 The Radiation Fields.- 6.2 Radiation of an Accelerated Electron in a Magnetic Field.- 6.2.1 Angular Distribution of the Radiation.- 6.2.2 Frequency Distribution of the Radiation.- 6.3 Field Polarization.- 6.3.1 Polarization in the Plane of Rotation.- 6.3.2 Polarization for Arbitrary Angles of Observation.- 6.4 Radiation from an Ensemble of Electrons.- 6.4.1 Velocity-Averaged Emissivity.- 6.4.2 Emission from an Ensemble of Electrons.- 6.5 Synchrotron Radiation from Z Pinches.- 6.5.1 X Ray Emission.- 6.5.2 X Ray Spectroscopy.- 6.5.3 Morphology of the Thermal X Ray Source.- 6.6 Particle-in-Cell Simulation of Synchrotron Processes.- 6.6.1 Simulated Z Pinches.- 6.6.2 Synchrotron Bursts from Simulated Z Pinches.- 6.6.3 Synchrotron Source Radiation Patterns.- 6.7 Synchrotron Radiation from Cosmic Sources.- 6.7.1 Gross Radio Properties of Galaxies.- 6.7.2 Double Radio Galaxies.- 6.7.3 "Jets" and Superluminosity.- 6.7.4 Quasars and Active Galaxy Nuclei.- 6.7.5 X Ray and Gamma-Ray Sources.- 7. Transport of Cosmic Radiation.- 7.1 Energy Transport in Plasma.- 7.1.1 Group Velocity.- 7.1.2 Time Rate of Decay of Wave Oscillations.- 7.2 Applications of Geometrical Optics.- 7.2.1 Basic Principle and Limitations of Geometrical Optics.- 7.2.2 Equation of Transfer.- 7.3 Black Body Radiation.- 7.4 The Source Function and Kirchoff's Law.- 7.4.1 Classical Limit of the Emission, Absorption, and Source Functions.- 7.5 Self Absorption by Plasma Filaments.- 7.6 Large-Scale, Random Magnetic Field Approximation.- 7.6.1 Plasma Effects.- 7.6.2 Monoenergetic Electrons.- 7.7 Anisotropic Distribution of Velocities.- 8. Particle-in-Cell Simulation of Cosmic Plasma.- 8.1 "In-Situ" Observation of Cosmic Plasmas via Computer Simulation.- 8.2 The History of Electromagnetic Particle-in-Cell Simulation.- 8.3 The Laws of Plasma Physics.- 8.4 Multidimensional Particle-in-Cell Simulation.- 8.4.1 Sampling Constraints in Multidimensional Particle Codes.- 8.4.2 Discretization in Time and Space.- 8.4.3 Spectral Methods and Interpolation.- 8.5 Techniques for Solution.- 8.5.1 Leap-Frogging Particles Against Fields.- 8.5.2 Particle Advance Algorithm.- 8.5.3 Field Advance Algorithm.- 8.6 Issues in Simulating Cosmic Phenomena.- 8.6.1 Boundary Conditions.- 8.6.2 Relativity.- 8.6.3 Compression of Time Scales.- 8.6.4 Collisions.- 8.7 Gravitation.- 8.8 Scaling Laws.- 8.9 Data Management.- 8.10 Further Developments in Plasma Simulation.- Appendix A. Transmission Line Fundamentals in Space and Cosmic Plasmas.- A.1 Transmission Lines.- A.2 Definition of the State of the Line at a Point.- A.3 Primary Parameters.- A.4 General Equations.- A.4.1 The General Case.- A.4.2 The Special Case of the Lossless Line.- A.5 Heaviside's Operational Calculus (The Lapace Transform).- A.5.1 The Propagation Function.- A.5.2 Characteristic Impedance.- A.5.3 Reflection Coefficients.- A.6 Time-Domain Reflectometry.- Appendix B. Polarization of Electromagnetic Waves in Plasma.- Appendix C. Dusty and Grain Plasmas.- C.1 Dusty Plasma.- C.2 Grain Plasma.- Appendix D. Some Useful Units and Constants.- Appendix E. TRISTAN.- References.