Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.
Rezensionen / Stimmen
G.K. Pedersen
Analysis Now
"The writing is clear and precise, but has an informal and humorous touch which enlivens the material. One of the strengths of the book is the excellent set of problems, which accompany the text."-MATHEMATICAL REVIEWS
Reihe
Auflage
1st ed. 1989. Corr. 2nd printing 2001
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Graduate
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 22 mm
Gewicht
ISBN-13
978-0-387-96788-2 (9780387967882)
DOI
10.1007/978-1-4612-1007-8
Schweitzer Klassifikation
1 General Topology.- 1.1. Ordered Sets.- 1.2. Topology.- 1.3. Convergence.- 1.4. Continuity.- 1.5. Separation.- 1.6. Compactness.- 1.7. Local Compactness.- 2 Banach Spaces.- 2.1. Normed Spaces.- 2.2. Category.- 2.3. Dual Spaces.- 2.4. Seminormed Spaces.- 2.5. w*-Compactness.- 3 Hilbert Spaces.- 3.1. Inner Products.- 3.2. Operators on Hilbert Space.- 3.3. Compact Operators.- 3.4. The Trace.- 4 Spectral Theory.- 4.1. Banach Algebras.- 4.2. The Gelfand Transform.- 4.3. Function Algebras.- 4.4. The Spectral Theorem, I.- 4.5. The Spectral Theorem, II.- 4.6. Operator Algebra.- 4.7. Maximal Commutative Algebras.- 5 Unbounded Operators.- 5.1. Domains, Extensions, and Graphs.- 5.2. The Cayley Transform.- 5.3. Unlimited Spectral Theory.- 6 Integration Theory.- 6.1. Radon Integrals.- 6.2. Measurability.- 6.3. Measures.- 6.4. LP-Aspaces.- 6.5. Duality Theory.- 6.6. Product Integrals.- List of Symbols.