Based on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular, these notes contain a description of Peter Jones' geometric traveling salesman theorem, the proof of the equivalence between uniform rectifiability and boundedness of the Cauchy operator on Ahlfors-regular sets, the complete proofs of the Denjoy conjecture and the Vitushkin conjecture (for the latter, only the Ahlfors-regular case) and a discussion of X. Tolsa's solution of the Painlevé problem.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 8 mm
Gewicht
ISBN-13
978-3-540-00001-3 (9783540000013)
DOI
Schweitzer Klassifikation
Preface.- Notations and conventions.- Some geometric measures theory.- Jones' traveling salesman theorem.- Menger curvature.- The Cauchy singular integral operator on Ahlfors-regular sets.- Analytic capacity and the Painlevé Problem.- The Denjoy and Vitushkin conjectures.- The capacity $gamma (+)$ and the Painlevé Problem.- Bibliography.- Index.