1. Introduction..- 1.1 Requirements for Thin Film and In-Depth Analysis.- 1.2 Object and Outline of the Book.- References.- 2. The Application of Beam and Diffraction Techniques to Thin Film and Surface Micro-Analysis..- 2.1 Methods to Determine Chemical Structures in Material Research.- 2.2 Selected Analytical Features Used to Determine Chemical Structures.- 2.2.1 Depth Profiling.- a) Destructive Depth Profiling.- b) Nondestructive Methods for Depth and Thin Film Analysis.- 2.2.2 Microspot Analysis and Element Imaging.- 2.3 Determining Physical Structures in Material Research.- 2.3.1 X-Ray Diffraction.- 2.3.2 X-Ray Double Crystal Diffraction.- 2.3.3 Ultrasonic (Acoustic) Microscopy.- 2.4 Application of Different Microanalytical Techniques to Specific Analytical Problems.- 2.4.1 AES and TEM-EDX in Interface Analysis of MnZn Ferrites.- 2.4.2 Interfaces of SrTiO3 Boundary Layer Capacitor Material Studies by TEM and Selected-Area EDX.- 2.4.3 Analysis of GaAlAs with SIMS, X-Ray Diffraction and AES.- 2.5 Future Prospects.- References.- 3. Depth Profile and Interface Analysis of Thin Films by AES and XPS.- 3.1 Quantification from First Principles.- 3.2 Initial Transient Layer.- 3.3 Steady-State Region.- 3.4 Film-Substrate Interface.- References.- 4. Secondary Neutral Mass Spectrometry (SNMS) and Its Application to Depth Profile and Interface Analysis..- 4.1 Background.- 4.2 Experimental Method.- 4.2.1 Related Techniques.- 4.2.2 Performance of SNMS.- a) The Postionizing Method.- b) Operation Modes of SNMS.- 4.3 Quantification of SNMS.- 4.3.1 Quantification for Atomic Sputtering.- 4.3.2 Quantification Using Molecular SNMS Signals.- 4.3.3 Sensitivity of SNMS.- 4.4 Applications of SNMS to Depth Profile Analysis.- 4.4.1 General Considerations.- 4.4.2 Examples of Depth Profiling by SNMS.- 4.5 Concluding Remarks.- References.- 5. In-Situ Laser Measurements of Sputter Rates During SIMS/AES In-Depth Profiling..- 5.1 Background.- 5.2 Principles of Laser Technique.- 5.2.1 Laser Optical Arrangement.- 5.2.2 Phase and Reflectance Measurement.- 5.2.3 Fundamentals of Sputter-Rate Determination.- 5.3 Experiments.- 5.4 Results and Discussion.- 5.4.1 Signal Artefacts.- 5.4.2 Phase and Reflectance Measurements During Sputtering.- a) Sputtering of Silicon Surfaces.- b) Doped Silicon.- c) Metal Film Material.- d) Transparent Material.- e) Opaque and Transparent Multilayers.- 5.5 Conclusion.- 5.A. Appendix.- A.1. Opaque Material.- A.2. Transparent Material.- References.- 6. Physical Limitations to Sputter Profiling at Interfaces - Model Experiments with Ge/Si Using KARMA..- 6.1 Background.- 6.1.1 General Problems Encountered in Sputter Profiling.- 6.1.2 Requirements for a Model Experiment.- 6.2 Experimental Approach.- 6.2.1 KARMA.- 6.2.2 Sample Preparation.- 6.3 Conversion of Raw Sputter Profiles into Depth Profiles.- 6.3.1 Establishing the Depth Scale.- 6.3.2 Escape-Depth Correction.- 6.3.3 Self-Consistent Determination of Effective Mean Free Paths.- 6.4 Depth Profiles of the Ge/Si Interface.- 6.4.1 Asymmetry of Depth Profiles.- 6.4.2 Broadening as a Function of Ion Mass and Energy.- 6.5 Dose Effects and Preferential Sputtering.- 6.5.1 Dose Effects.- 6.5.2 Preferential Sputtering.- 6.6 Depth Resolution in Sputter Profiling.- 6.6.1 Depth Resolution Limits.- 6.7 Summary and Outlook.- References.- 7. Depth Resolution and Quantitative Evaluation of AES Sputtering Profiles.- 7.1 Background.- 7.2 Calibration of the Depth Scale.- 7.3 Calibration of the Concentration Scale.- 7.4 Depth Resolution in Sputter Profiling.- 7.5 Determination of the Resolution function.- 7.5.1 Definition of Depth Resolution.- 7.5.2 Experimental Determination of Depth Resolution.- 7.5.3 Model Descriptions of Depth Resolution.- 7.6 Deconvolution Procedures.- 7.7 Conclusion.- References.- 8. The Theory of Recoil Mixing in Solids.- 8.1 Background.- 8.1.1 Nomenclature.- 8.2 Review of Recoil Mixing Models.- 8.2.1 Primary Recoil Implantation and Mixing.- 8.2.2 Cascade Mixing.- a) Random-Walk Models.- b) Transport Theory Approach.- c) Miscellaneous Approaches.- 8.3 General Formulation of Atomic Relocation Phenomena.- 8.3.1 Target Description.- a) Unbounded Total Density N(?,x).- b) Total Density Bounded to N(x) = No.- 8.3.2 Description of Atomic Relocation.- 8.3.3 Balance Equation for Atomic Relocation.- a) The Diffusion Approximation.- 8.4 Solutions to the Specific Mixing Models.- 8.4.1 Thermal Mixing and Thermal Diffusion.- 8.4.2 Recoil Mixing.- a) Cascade Mixing, Diffusion Approaches.- b) Cascade Mixing, Forthright Solutions.- 8.5 Summary and Outlook.- 8.6 List of Symbols.- References.- Additional References with Titles.