First I will introduce a generalization of the notion of (right)-exact functor between abelian categories to the case of non-additive functors. The main result of this selection is an extension theorem: any functor defined on a suitable subcategory can be extended uniquely to a right exact functor defined on the whole category. Next I use those results to define various functors of generalized tensor induction, associated to finite bisets, between categories attached to finite groups. This includes a definition of tensor induction for Mackey functors, for cohomological Mackey functors, for $p$-permutation modules and algebras. This also gives a single formalism of bisets for restriction, inflation, and ordinary tensor induction for modules.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
ISBN-13
978-0-8218-1951-7 (9780821819517)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Introduction Non additive exact functors Permutation Mackey functors Tensor induction for Mackey functors Relations with the functors ${\mathcal L}_U$ Direct product of Mackey functors Tensor induction for Green functors Cohomological tensor induction Tensor induction for $p$-permutation modules Tensor induction for modules Bibliography.