In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 16 mm
Gewicht
ISBN-13
978-3-540-70564-2 (9783540705642)
DOI
10.1007/978-3-540-70565-9
Schweitzer Klassifikation
Preliminaries on Filtered Derived Categories and Topoi.- Weight Filtrations on Log Crystalline Cohomologies.- Weight Filtrations and Slope Filtrations on Rigid Cohomologies (Summary).