This is a collection of lecture notes from the Summer School 'Cycles Algebriques; Aspects Transcendents, Grenoble 2001'. The topics range from introductory lectures on algebraic cycles to more advanced material. The advanced lectures are grouped under three headings: Lawson (co)homology, motives and motivic cohomology and Hodge theoretic invariants of cycles. Among the topics treated are: cycle spaces, Chow topology, morphic cohomology, Grothendieck motives, Chow-Kuenneth decompositions of the diagonal, motivic cohomology via higher Chow groups, the Hodge conjecture for certain fourfolds, an effective version of Nori's connectivity theorem, Beilinson's Hodge and Tate conjecture for open complete intersections. As the lectures were intended for non-specialists many examples have been included to illustrate the theory. As such this book will be ideal for graduate students or researchers seeking a modern introduction to the state-of-the-art theory in this subject.
Reihe
Sprache
Verlagsort
Zielgruppe
Produkt-Hinweis
Illustrationen
Maße
Höhe: 229 mm
Breite: 152 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-0-521-54547-1 (9780521545471)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Herausgeber*in
Johannes Gutenberg Universitaet Mainz, Germany
Universite de Grenoble
Part I. Introductory Material: 1. Chow varieties, the Euler-Chow series and the total coordinate ring J. Elizondo; 2. Introduction to Lawson homology C. Peters and S. Kosarew; Part II. Lawson (Co)homology: 3. Topological properties of the algebraic cycles functor P. Lima-Filho; Part III. Motives and Motivic Cohomology: 4. Lectures on motives J. P. Murre; 5. A short introduction to higher Chow groups P. Elbaz-Vincent; Part IV. Hodge Theoretic Invariants of Cycles: 6. Three lectures on the Hodge conjecture J. D. Lewis; 7. Lectures on Nori's connectivity theorem J. Nagel; 8. Beilinson's Hodge and Tate conjectures S. Saito.