Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing m
ultistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
Multistrategy Learning contains contributions characteristic of the current research in this area.
Reihe
Auflage
Reprinted from MACHINE LEARNING, 11:2-3, 1993
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Research
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Illustrationen
Maße
Höhe: 244 mm
Breite: 166 mm
Dicke: 16 mm
Gewicht
ISBN-13
978-0-7923-9374-0 (9780792393740)
DOI
10.1007/978-1-4615-3202-6
Schweitzer Klassifikation
Inferential Theory of Learning as a Conceptual Basis for Multistrategy Learning.- Multistrategy Learning and Theory Revision.- Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven Learning.- Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding.- Balanced Cooperative Modeling.- Plausible Justification Trees: A Framework for Deep and Dynamic Integration of Learning Strategies.