NOMENCLATURE
PART 1: INTRODUCTION & DESIGN CONSIDERATIONS
1. INTRODUCTION TO DESIGN
1.1. Introduction
1.2. Phases of Design
1.3. Basic Mechanical Functions
1.4. Design Factors
1.5. Synthesis Approach to Design
1.6. Product Life Cycle
1.7. Business Measures
1.8. Research and Development Process in Product Cycle
1.9. Teamwork for Product or System Design
1.10. Design and Development Case Study.
1.11. Units and Fundamentals
1.12. Summary
1.13. References
1.14. Problems
2. DESIGN CONSIDERATIONS
2.1. Mathematical Modeling
2.2. Calculation Tools
2.3. Design Procedure
2.4. Manufacturing Processes
2.5. Standard Sets and Components
2.6. Codes and Standards
2.7. Summary
2.8. References
2.9. Problems
PART 2: KNOWLEDGE-BASED DESIGN
3. INTRODUCTION TO COMPUTER AIDED TECHNIQUES
3.1. CAD and Geometric Modeling
3.2. Geometric Construction and FE Analysis
3.3. CAD/CAM/CAE and Advanced Systems
3.4. Virtual Reality3.5. Summary
3.6. References
3.7. Problems
4. COMPUTER AIDED DESIGN
4.1. 3-D Modeling and Transformation
4.2. Parametric Modeling
4.3. CAD Hardware and Software
4.4. Rendering and Animation
4.5. Data Structure
4.6. Using CAD in 3D Modeling and CAM
4.7. Summary
4.8. References
4.9. Problems
5. OPTIMIZATION
5.1. Introduction
5.2. Searches in One Direction
5.3. Multi-Dimensional Classical Indirect Approach
5.4. Multi-Dimensional Unconstrained Problem
5.5. Multi-Dimensional Constrained Problem
5.6. Applications to Machine Elements and Systems
5.7. Summary
5.8. References
5.9. Problems
6. STRESSES AND DEFLECTION
6.1. Loads, Shear, Moment, Slope, and Deflection
6.2. Mathematical Model
6.3. Simple Stresses
6.4. Combined Stresses
6.5. Curved Beams
6.6. Strain Energy and Deflection
6.7. Columns
6.8. Equivalent Element
6.9. Thermal Effects
6.10. Stress Concentration Factors
6.11. Finite Element Method
6.12. Computer Aided Design and Optimization
6.13. Summary
6.14. References
6.15. Problems
7. MATERIALS STATIC AND DYNAMIC STRENGTH
7.1. Material Structure and Failure Modes
7.2. Numbering Systems and Designations
7.3. Heat Treatment and Alloying Elements
7.4. Material Propertied and General Applications
7.5. Particular Materials for Machine Elements
7.6. Hardness and Strength
7.7. Failure and Static Failure Theories
7.8. Fatigue Strength and Factors Affecting Fatigue
7.9. Fracture Mechanics and Fracture Toughness
7.10. Computer Aided Selection and Optimization
7.11. Summary
7.12. References
7.13. Problems
8. INTRODUCTION TO ELEMENTS AND SYSTEM SYNTHESIS
8.1. Introduction
8.2. Basic and Common Machine Elements
8.3. Reverse Engineering
8.4. Sample Applications
8.5. Computer Aided Design
8.6. System Synthesis
8.7. Computer Aided Assembly
8.8. Summary
8.9. References
8.10. Problems
PART 3: DETAILED DESIGN OF MACHINE ELEMENTS
A. BASIC JOINTS AND MACHINE ELEMENTS
9. SCREWS, FASTENERS AND PERMANENT JOINTS
9.1. Standards and Types
9.2. Stresses in Threads
9.3. Bolted Connections
9.4. Strength in Static and Fatigue
9.5. Power Screws
9.6. Permanent Joints
9.7. Computer Aided Design and Optimization
9.8. Summary
9.9. References
9.10. Problems
10. SPRINGS
10.1. Types of Springs
10.2. Helical Springs
10.3. Leaf Springs
10.4. Bellville Springs
10.5. Elastomeric and Other Springs
10.6. Computer Aided Design and Optimization
10.7. Summary
10.8. References
10.9. Problems
11. ROLLING BEARINGS
11.1. Bearing Types and Selection
11.2. Standard Dimension Series
11.3. Initial Design and Selection
11.4. Bearing Load
11.5. Detailed Design and Selection
11.6. Speed limits
11.7. Lubrication and Friction
11.8. Mounting and Constructional Details
11.9. Computer Aided Design and Optimization
11.10. Summary
11.11. References
11.12. Problems
12. JOURNAL BEARINGS
12.1. Lubricants
12.2. Hydrodynamic Lubrication
12.3. Journal Bearing Design Procedure
12.4. Boundary and Mixed Lubrication
12.5. Plain Bearing Materials
12.6. Computer Aided Design and Optimization
12.7. Summary
12.8. References
12.9. Problems
B. POWER TRANSMITTING AND CONTROLLING ELEMENTS
13. INTRODUCTION TO POWER TRANSMISSION AND CONTROL
13.1. Prime Movers and Machines
13.2. Collinear and Noncollinear Transmission Elements
13.3. Power Control Elements
13.4. Computer Aided Design of a Power Transmission System
13.5. Summary
13.6. References
13.7. Problems
14. SPUR GEARS
14.1. Types and Utility
14.2. Definition, Kinematics and Standards
14.3. Force Analysis and Power transmission
14.4. Design Procedure
14.5. Critical Speed
14.6. Computer Aided Design and Optimization
14.7. Constructional Details
14.8. Summary
14.9. References
14.10. Problems
15. HELICAL, BEVEL AND WORM GEARS
15.1. Helical Gears
15.2. Bevel Gears
15.3. Worm Gears
15.4. Gear Failure Regimes and Remedies
15.5. Computer Aided Design and Optimization
15.6. Constructional Details
15.7. Summary
15.8. References
15.9. Problems
16. FLEXIBLE ELEMENTS
16.1. V BELTS
16.2. FLAT BELTS
16.3. ROPES
16.4. CHAINS
16.5. FRICTION DRIVES
16.6. FLEXIBLE SHAFTS
16.7. Computer Aided Design and Optimization
16.8. Summary
16.9. References
16.10. Problems
17. SHAFTS
17.1. Types of Shafts and Axels
17.2. Mathematical Model
17.3. Initial Design Estimate
17.4. Detailed Design
17.5. Design for Rigidity
17.6. Critical Speed
17.7. Computer Aided Design and Optimization
17.8. Constructional Details
17.9. Summary
17.10. References
17.11. Problems
18. CLUTCHES, BREAKS, AND FLYWHEELS
18.1. Introduction and Classifications
18.2. Cone Clutches and Brakes
18.3. Disk Clutches and Brakes
18.4. Caliper Disk Brakes
18.5. Energy Dissipation and Temperature Rise
18.6. Design Process
18.7. Computer Aided Design and Optimization
18.8. Flywheels
18.9. Constructional Details
18.10. Summary
18.11. References
18.12. Problems
APENDIXES
A1. Conversion between US and SI Units
A2. Standard SI Prefixes
A3. Preferred Numbers and Sizes
A4. Standard Rods, or Bars
A5. Standard Joining and Retaining Elements
A6. Standard Sealing Elements
A7. Material Properties
A8. Standard Sections or Profiles and Section Properties