This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry.
Rezensionen / Stimmen
"Another title, perhaps "Surveys of Recent Advances in Knot Theory" might better suit this book. "Handbook" suggests, say, tabulations of those knots with few crossings in various classes, listed with their properties and invariants, everything supplemented by specifications of useful algorithms and key theorems that capture such regularities as emerge from all the data. But the era of such a handbook has passed. Indeed, the chapter by J. Hoste describes the state of the art concerning know enumeration. Although we lack an efficient, general recognition algorithm, existing techniques will classify the billions of distinct knots up to 20 crossings, and the mere dissemination of the results requires digital means and ingenuity. Other chapters will also immediately invite undergraduates, especially chapters by J.S. Burman and T.E. Brendle on braids, and L.H. Kauffman on knot diagrammatics. Overall, the ten chapters represent distinct views of the subject by some of its leading experts. More advanced students may read chapters by C. Adams and J. Weeks about hyperbolic (complements of) knots for an excellent entree into Thurston's geometrization program, or chapters G. Friedman and C. Livingston about spheres knotting in four-dimensional space, an intriguing topic rarely treated outside the journal literature. SUMMING UP: Highly recommended. General readers; lower-division undergraduates through professionals." --D.V. Feldman, University of New Hampshire
Sprache
Verlagsort
Verlagsgruppe
Elsevier Science & Technology
Zielgruppe
Für Beruf und Forschung
Professional mathematicians, Physicists and lay people with a flair for mathematics
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Maße
Höhe: 251 mm
Breite: 177 mm
Dicke: 35 mm
Gewicht
ISBN-13
978-0-444-51452-3 (9780444514523)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Herausgeber*in
University at Buffalo, New York, USA
University of Tennessee, Knoxville, USA
Hyperbolic Knots - Colin Adams
Braids: A Survey - Joan S. Birman and Tara E. Brendle
Legendrian and Transversal Knots - John B. Etnyre
Knot Spinning - Greg Friedman
The Enumeration and Classification of Knots and Links - Jim Hoste
Knot Diagrammatics - Louis H. Kauffman
A Survey of Classical Knot Concordance - Charles Livingston
Knot Theory of Complex Plane Curves - Lee Rudolph
Thin Position in the Theory of Classical Knots - Martin Scharlemann
Computation of Hyperbolic Structures in Knot Theory - Jeff Weeks