Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. The topics discussed include hybrid formulations, Schwarz, substructuring and Lagrange multiplier methods for elliptic equations, computational issues, least squares-control methods, multilevel methods, non-self adjoint problems, parabolic equations, saddle point applications (Stokes, porous media and optimal control), non-matching grid discretizations, heterogeneous models, fictitious domain methods, variational inequalities, maximum norm theory, eigenvalue problems, optimization problems and the Helmholtz scattering problem. Selected convergence theory is also included.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Research
Illustrationen
40
40 s/w Abbildungen
XIV, 770 p. 40 illus.
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 42 mm
Gewicht
ISBN-13
978-3-540-77205-7 (9783540772057)
DOI
10.1007/978-3-540-77209-5
Schweitzer Klassifikation
Decomposition Frameworks.- Schwarz Iterative Algorithms.- Schur Complement and Iterative Substructuring Algorithms.- Lagrange Multiplier Based Substructuring: FETI Method.- Computational Issues and Parallelization.- Least Squares-Control Theory: Iterative Algorithms.- Multilevel and Local Grid Refinement Methods.- Non-Self Adjoint Elliptic Equations: Iterative Methods.- Parabolic Equations.- Saddle Point Problems.- Non-Matching Grid Discretizations.- Heterogeneous Domain Decomposition Methods.- Fictitious Domain and Domain Imbedding Methods.- Variational Inequalities and Obstacle Problems.- Maximum Norm Theory.- Eigenvalue Problems.- Optimization Problems.- Helmholtz Scattering Problem.