13 Vectors.- 13.1 Vectors in the Plane.- 13.2 Vectors in Space.- 13.3 Lines and Distance.- 13.4 The Dot Product.- 13.5 The Cross Product.- 13.6 Matrices and Determinants.- 14 Curves and Surfaces.- 14.1 The Conic Sections.- 14.2 Translation and Rotation of Axes.- 14.3 Functions, Graphs, and Level Surfaces.- 14.4 Quadric Surfaces.- 14.5 Cylindrical and Spherical Coordinates.- 14.6 Curves in Space.- 14.7 The Geometry and Physics of Space Curves.- 15 Partial Differentiation.- 15.1 Introduction to Partial Derivatives.- 15.2 Linear Approximations and Tangent Planes.- 15.3 The Chain Rule.- 15.4 Matrix Multiplication and the Chain Rule.- 16 Gradients, Maxima, and Minima.- 16.1 Gradients and Directional Derivatives.- 16.2 Gradients, Level Surfaces, and Implicit Differentiation.- 16.3 Maxima and Minima.- 16.4 Constrained Extrema and Lagrange Multipliers.- 17 Multiple Integration.- 17.1 The Double Integral and Iterated Integral.- 17.2 The Double Integral Over General Regions.- 17.3 Applications of the Double Integral.- 17.4 Triple Integrals.- 17.5 Integrals in Polar, Cylindrical, and Spherical Coordinates.- 17.6 Applications of Triple Integrals.- 18 Vector Analysis.- 18.1 Line Integrals.- 18.2 Path Independence.- 18.3 Exact Differentials.- 18.4 Green's Theorem.- 18.5 Circulation and Stokes' Theorem.- 18.6 Flux and the Divergence Theorem.- Answers.