This book analyzes the existence and uniqueness of a generalized algebraic m- tiplicity for a general one-parameter family L of bounded linear operators with Fredholm index zero at a value of the parameter ? whereL(? ) is non-invertible. 0 0 Precisely, given K?{R,C}, two Banach spaces U and V over K, an open subset ? ? K,andapoint ? ? ?, our admissible operator families are the maps 0 r L?C (? ,L(U,V)) (1) for some r? N, such that L(? )? Fred (U,V); 0 0 hereL(U,V) stands for the space of linear continuous operatorsfrom U to V,and Fred (U,V) is its subset consisting of all Fredholm operators of index zero. From 0 the point of view of its novelty, the main achievements of this book are reached in case K = R, since in the case K = C and r = 1, most of its contents are classic, except for the axiomatization theorem of the multiplicity.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 250 mm
Breite: 175 mm
Dicke: 24 mm
Gewicht
ISBN-13
978-3-7643-8400-5 (9783764384005)
DOI
10.1007/978-3-7643-8401-2
Schweitzer Klassifikation
Finite-dimensional Classic Spectral Theory.- The Jordan Theorem.- Operator Calculus.- Spectral Projections.- Algebraic Multiplicities.- Algebraic Multiplicity Through Transversalization.- Algebraic Multiplicity Through Polynomial Factorization.- Uniqueness of the Algebraic Multiplicity.- Algebraic Multiplicity Through Jordan Chains. Smith Form.- Analytic and Classical Families. Stability.- Algebraic Multiplicity Through Logarithmic Residues.- The Spectral Theorem for Matrix Polynomials.- Further Developments of the Algebraic Multiplicity.- Nonlinear Spectral Theory.- Nonlinear Eigenvalues.