This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics.
Key Features:
Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks.
Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections.
Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors.
Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics.
Includes supplements and exercises to facilitate deeper comprehension.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Academic and Professional Reference
Illustrationen
19 s/w Tabellen, 36 s/w Abbildungen, 36 s/w Zeichnungen
19 Tables, black and white; 36 Line drawings, black and white; 36 Illustrations, black and white
Maße
Höhe: 240 mm
Breite: 161 mm
Dicke: 29 mm
Gewicht
ISBN-13
978-1-4398-3948-5 (9781439839485)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Tze Leung Lai is the Ray Lyman Wilbur Professor and Professor of Statistics at Stanford University. He received the COPSS Presidents' Award in 1983. He has published extensively on sequential statistical analysis and a wide range of applications in the biomedical sciences, engineering, and finance.
Haipeng Xing is a Professor of Applied Mathematics and Statistics at State University of New York, Stony Brook. His research interests include sequential statistical methods and its applications, econometrics, quantitative finance, and recursive methods in macroeconomics.
Autor*in
Stanford University, California, USA
SUNY, Stony Brook, New York, USA
Preface Part 1: Background and Basic Analytics 1. Risk management and regulation 2. Basic concepts and methods in risk management 3. Financial derivatives and their pricing theory 4. Insurance risk and credibility theory Part 2: Advanced Data and Risk Analytics 5. Supervised and unsupervised learning 6. Bandit, Markov decision process and reinforcement learning 7. Monte Carlo methods and rare event analytics 8. Surveillance and predictive analytics Part 3: Data and Risk Analytics in FinTech 9. FinTech ABCD and analytics Bibliography Index