Dieses Lehrbuch bietet einen modernen Zugang zur Theorie der endlichen Gruppen. Ohne große Vorkenntnisse wird der Leser mit den Grundlagen der Theorie vertraut gemacht und dann zu neueren Entwicklungen in der Gruppentheorie hingeführt, die unter dem Stichwort "lokale Strukturtheorie" zusammengefaßt werden können. Dabei berücksichtigen die Autoren die folgenden zwei Gesichtspunkte in besonderem Maße: Zum einen geben sie einen Einblick in eine Theorie, die völlig aus sich heraus eine Vielfalt an Methoden und Begriffen entwickelt hat und schließlich Anfang der achtziger Jahre zur Klassifikation der endlichen einfachen Gruppen führte. Zum anderen machen sie deutlich, daß diese Theorie weder abgeschlossen noch vollendet ist, sondern auch nach dieser Klassifikation weiterlebt und sich weiterentwickelt.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Upper undergraduate
Illustrationen
2
2 s/w Abbildungen
XII, 344 S. 2 Abb.
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 20 mm
Gewicht
ISBN-13
978-3-540-60331-3 (9783540603313)
DOI
10.1007/978-3-642-58816-7
Schweitzer Klassifikation
1. Grundlagen.- 1.1 Gruppen und Untergruppen.- 1.2 Homomorphismen und Normalteiler.- 1.3 Automorphismen.- 1.4 Zyklische Gruppen.- 1.5 Kommutatoren.- 1.6 Produkte von Gruppen.- 1.7 Minimale Normalteiler.- 1.8 Kompositionsreihen.- 2. Abelsche Gruppen.- 2.1 Die Struktur der abelschen Gruppen.- 2.2 Automorphismen zyklischer Gruppen.- 3. Operieren und Konjugieren.- 3.1 Operieren.- 3.2 Der Satz von Sylow.- 3.3 Komplemente von Normalteilern.- 4. Permutationsgruppen.- 4.1 Transitive Gruppen und Frobeniusgruppen.- 4.2 Primitive Operation.- 4.3 Die symmetrische Gruppe.- 4.4 Imprimitive Gruppen und Kranzprodukte.- 5. p-Gruppen und nilpotente Gruppen.- 5.1 Nilpotente Gruppen.- 5.2 Nilpotente Normalteiler.- 5.3p-Gruppen mit zyklischen maximalen Untergruppen.- 6. Normal-und Subnormalteilerstruktur.- 6.1 Auflösbare Gruppen.- 6.2 Der Satz von Schur-Zassenhaus.- 6.3 Radikal und Residuum.- 6.4?-separable Gruppen.- 6.5 Komponenten und die verallgemeinerte Fittinguntergruppe.- 6.6 Primitive maximale Untergruppen.- 6.7 Subnormalteiler.- 7. Verlagerung und p-Faktorgruppen.- 7.1 Die Verlagerungsabbildung.- 7.2 Normale p-Komplemente.- 8. Operation von Gruppen auf Gruppen.- 8.1 Operation auf Gruppen.- 8.2 Teilerfremde Operation.- 8.3 Operation auf abelschen Gruppen.- 8.4 Zerlegung einer Operation.- 8.5 Minimale nichttriviale Operation.- 8.6 Lineare Operation und die zweidimensionalen linearen Gruppen.- 9. Quadratische Operation.- 9.1 Quadratische Operation.- 9.2 Die Thompson-Untergruppe.- 9.3 Quadratische Operation in p-separablen Gruppen.- 9.4 Eine charakteristische Untergruppe.- 9.5 Fixpunktfreie Operation.- 10. Einbettungen p-lokaler Untergruppen.- 10.1 Primitive Paare.- 10.2 Derpagb-Satz.- 10.3 Die Amalgam-Methode.- 11. Signalisator-Funktoren.- 11.1 Definitionen und einfacheEigenschaften.- 11.2 Faktorisierungen.- 11.3 Der Vollständigkeitssatz von Glaiberman.- 12. N-Gruppen.- 12.1 Eine Anwendung des Vollständigkeitssatzes.- 12.2J(T)-Komponenten.- 12.3N-Gruppen mit lokaler Charakteristik 2.- Literatur.- Lehrbücher, Monographien.- Zeitschriftenartikel.