Let $G$ be a compact, simply connected, simple Lie group. By applying the notion of a twisted tensor product in the senses of Brown as well as of Hess, we construct an economical injective resolution to compute, as an algebra, the cotorsion product which is the $E_2$-term of the cobar type Eilenberg-Moore spectral sequence converging to the cohomology of classifying space of the loop group $LG$. As an application, the cohomology $H^*(BLSpin(10); \mathbb{Z}/2)$ is explicitly determined as an $H^*(BSpin(10); \mathbb{Z}/2)$-module by using effectively the cobar type spectral sequence and the Hochschild spectral sequence, and further, by analyzing the TV-model for $BSpin(10)$.
Reihe
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Für höhere Schule und Studium
Gewicht
ISBN-13
978-0-8218-3856-3 (9780821838563)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Introduction The mod 2 cohomology of $BLSO(n)$ The mod 2 cohomology of $BLG$ for $G=Spin(n)\ (7\leq n\leq 9)$ The mod 2 cohomology of $BLG$ for $G=G_2,F_4$ A multiplication on a twisted tensor product The twisted tensor product associated with $H^*(Spin(N);\mathbb{Z}/2)$ A manner for calculating the homology of a DGA The Hochschild spectral sequence Proof of Theorem 1.6 Computation of a cotorsion product of $H^*(Spin(10);\mathbb{Z}/2)$ and the Hochschild homology of $H^*(BSpin(10);\mathbb{Z}/2)$ Proof of Theorem 1.7 Proofs of Proposition 1.9 and Theorem 1.10 Appendix Bibliography.