Machine Learning in Bioinformatics of Protein Sequences guides readers around the rapidly advancing world of cutting-edge machine learning applications in the protein bioinformatics field. Edited by bioinformatics expert, Dr Lukasz Kurgan, and with contributions by a dozen of accomplished researchers, this book provides a holistic view of the structural bioinformatics by covering a broad spectrum of algorithms, databases and software resources for the efficient and accurate prediction and characterization of functional and structural aspects of proteins. It spotlights key advances which include deep neural networks, natural language processing-based sequence embedding and covers a wide range of predictions which comprise of tertiary structure, secondary structure, residue contacts, intrinsic disorder, protein, peptide and nucleic acids-binding sites, hotspots, post-translational modification sites, and protein function. This volume is loaded with practical information that identifies and describes leading predictive tools, useful databases, webservers, and modern software platforms for the development of novel predictive tools.
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Maße
Höhe: 235 mm
Breite: 157 mm
Dicke: 25 mm
Gewicht
ISBN-13
978-981-12-5857-2 (9789811258572)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Herausgeber*in
Virginia Commonwealth Univ, Usa