This book attempts to build a bridge between two sciences: chemistry and electronics. The inside of the black boxes the nuclear chemist uses daily is explained in simple electronic terms. Knowledge of the inside not only satisfies curiosity but helps one "get the most out of the available equipment." Likewise, this book tries to give sufficient understanding for not "over- buying," that is to say, for buying the equipment which just serves the purpose, instead of buying the best so at least it will serve the purpose. The first three chapters give a concise understanding of what the area of applied nuclear chemistry is concerned with and what kind of equipment is generally used. Chapter 1 gives a theoretical background, while Chapter 3 deals with the practical implementations. Thus, these chapters provide the background to determine what one can expect from the experiments. The remainder of the book is devoted to the practical instrumentation of the experiments. Each chapter deals with specific types of instruments and devices, discusses briefly the electronics involved, considers the limitations, and investigates how and to what extent they can be circumvented.
The advantage of having different contributors, each with his own practical experience, shows clearly in this latter aspect. Detailed practical knowledge and experience can be explained best by the person who has long been con- cerned with the subject theoretically and practically.
Sprache
Verlagsort
Verlagsgruppe
Springer Science+Business Media
Zielgruppe
Illustrationen
Maße
Höhe: 230 mm
Breite: 150 mm
ISBN-13
978-0-306-30562-7 (9780306305627)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation
1 Basic Theory of Nuclear Processes.- 1.1. Introduction.- 1.2. Atoms and Nuclei.- 1.2.1. Structure of the Atom.- 1.2.2. Electron Cloud.- 1.2.3. Nucleus.- 1.3. Nuclear Models.- 1.4. Radiation.- 1.4.1. Origin and Type of Radiation.- 1.4.2. Electromagnetic Radiation or Photons.- 1.4.3. Corpuscular Radiation.- 1.5. Nuclear Reactions and Radioactivity.- 1.5.1. Characteristics.- 1.5.2. Reaction Processes.- 1.5.3. Cross Section for Nuclear Reactions.- 1.5.4. Fission.- 1.5.5. Radioactivity.- 1.5.6. Radioactive Growth and Decay.- 1.6. Interaction of Radiation with Matter.- 1.6.1. Electromagnetic Radiation.- 1.6.2. Corpuscular Radiation.- 1.7. References.- 2 Systems and Their Use.- 2.1. Introduction.- 2.2. Detectors.- 2.2.1. Ionization Detectors.- 2.2.2. Excitation Detectors.- 2.2.3. Output Signals.- 2.3. Instrumentation.- 2.3.1. NIM Standard.- 2.3.2. Electrometers.- 2.3.3. Preamplifiers.- 2.3.4. Main Amplifiers.- 2.3.5. Scalers.- 2.3.6. Ratemeters.- 2.3.7. Timing Circuits.- 2.3.8. Single-Channel Analyzers.- 2.3.9. Multichannel Analyzers.- 2.3.10. Computers.- 2.3.11. Interface Equipment.- 2.3.12. High-Voltage Power Supplies.- 2.4. References.- 3 Applications.- 3.1. Introduction.- 3.2. Neutron Activation Analysis.- 3.3. Fluorescence Analysis.- 3.4. Mossbauer Effect.- 3.5. Tracers and Labeling of Molecules.- 3.5.1. Factors to Consider for Tracing.- 3.5.2. Labeling of Molecules.- 3.6. Radiodating techniques.- 3.7. Absolute Activity.- 3.7.1. 4? Counting.- 3.7.2. ?-? Coincidence Counting.- 3.8. Hot Atom Chemistry.- 3.9. Radiation Chemistry.- 3.10. Half-Life Measurement.- 3.11. References.- 4 Detectors.- 4.1. Introduction.- 4.2. Detector Physics in General.- 4.3. Gas-Filled Radiation Detectors.- 4.3.1. Operating Regions.- 4.3.2. Applications.- 4.4. Scintillation Detectors.- 4.5. Semiconductor Detectors.- 4.5.1. Physical Description.- 4.5.2. Construction.- 4.5.3. Performance.- 4.6. Spectrum Interpretation.- 4.6.1. General.- 4.6.2. Detector Absorption.- 4.6.3. Effects of Geometry.- 4.6.4. Theoretical Spectrum Calculations.- 4.6.5. Photofraction.- 4.6.6. Energy Response Function.- 4.6.7. Spectrum Stripping.- 4.6.8. Efficiency.- 4.7. Background.- 4.7.1. Introduction.- 4.7.2. Environmental Background Sources.- 4.7.3. Inherent Background Sources.- 4.7.4. Detector Shield.- 4.8. References.- 5 NIM Standard.- 5.1. Introduction.- 5.2. Need for a Standard Modular System.- 5.3. History of Development.- 5.4. Advantages.- 5.5. Description.- 5.5.1. General Compatibility.- 5.5.2. Bins.- 5.5.3. Modules.- 5.5.4. Standard Voltages.- 5.5.5. Logic Levels.- 5.5.6. Connectors and Bussing.- 5.5.7. Other NIM Requirements.- 5.6. Power Supplies.- 5.7. Typical NIM Instruments.- 5.8. Nonnuclear NIM Instrumentation.- 5.9. CAMAC.- 5.10. Future of NIM.- 5.11. References and Notes.- 6 Preamplifiers.- 6.1. Introduction.- 6.2. Signal Sources in Nuclear Electronics.- 6.2.1. Silicon Surface Barrier Detectors.- 6.2.2. Lithium-Drifted Detectors.- 6.2.3. Scintillation Detectors.- 6.2.4. Gas-Filled Detectors.- 6.2.5. Pulse Generators.- 6.3. Basic Types of Preamplifiers.- 6.3.1. Current-Sensitive Preamplifiers.- 6.3.2. Voltage-Sensitive Preamplifiers.- 6.3.3. Charge-Sensitive Preamplifiers.- 6.4. Coupling the Preamplifier with the Detector and Other Equipment.- 6.4.1. Connection to the Detector.- 6.4.2. Counting Rate Considerations.- 6.4.3. Pulse Shape Compatibility.- 6.4.4. The Effect of Cable Length Between Detector and Preamplifier.- 6.4.5. Ground Loop Avoidance Techniques.- 6.5. Noise.- 6.5.1. Noise Specifications and Definitions.- 6.5.2. Comparison of Amplifier Input Devices.- 6.5.3. Determination of System Noise Performance.- 6.6. Considerations in Choosing a Preamplifier.- 6.6.1. Reasons for a Careful Choice.- 6.6.2. Type of Detector to be Used.- 6.6.3. Operating Bias Voltage Required by the Detector.- 6.6.4. Compatibility with Associated Equipment.- 6.6.5. Power Supplies.- 6.6.6. Cabling.- 6.6.7. Input Transient Protection.- 6.6.8. Energy to Detect.- 6.6.9. Energy Resolution Required.- 6.6.10. Preamplifier Rise Time Considerations.- 6.6.11. Ambient Operating Conditions.- 6.7. References and Notes.- 7 Amplifiers.- 7.1. Introduction.- 7.1.1. Purpose of Nuclear Pulse Amplifiers.- 7.1.2. Need for Shaping.- 7.2. Feedback Loops.- 7.3. Biased Amplifiers.- 7.3.1. Use and Method of Operation.- 7.3.2. Pulse Stretchers.- 7.4. Shaping.- 7.5. Timing.- 7.6. High Count Rates.- 7.7. Causes and Remedies of Poor Resolution.- 7.7.1. Solid-State Detector-Most Sensitive.- 7.7.2. Low Count Rates.- 7.7.3. High Count Rates.- 7.8. Specifications and Features.- 7.8.1. Importance.- 7.8.2. Input.- 7.8.3. Output.- 7.8.4. Gain.- 7.8.5. Shaping.- 7.8.6. Noise.- 7.8.7. Temperature.- 7.8.8. Linearity.- 7.8.9. Timing Accuracy.- 7.8.10. Overload Recovery.- 7.8.11. Common Mode Rejection.- 7.9. References and Notes.- 8 Single-Channel Analysers.- 8.1. Introduction.- 8.2. Components and Characteristics.- 8.2.1. Discriminator.- 8.2.2. Linearity.- 8.2.3. Modes of Operation.- 8.2.4. Count-Rate Considerations.- 8.3. Single-Channel Analyzer Applications.- 8.3.1. Categories.- 8.3.2. Pulse-Height Analysis Applications.- 8.3.3. Timing and Pulse-Height Analysis.- 8.4. Selecting a Single-Channel Analyzer for Your Application.- 8.5. Typical Applications of Single-Channel Analyzers.- 8.6. References.- 9 Multichannel Analyzers.- 9.1. Introduction.- 9.2. Applications.- 9.2.1. ?-Ray Energy Spectrometry.- 9.2.2. Radioactive Decay Measurement.- 9.2.3. Mossbauer Spectroscopy.- 9.2.4. Other Applications.- 9.3. Hardware Organization.- 9.3.1. Functions of the Major Components.- 9.3.2. Measurement Modes.- 9.4. Characteristics.- 9.4.1. Analog-to-Digital Converter.- 9.4.2. Memories.- 9.4.3. Display and Input/Output.- 9.4.4. The Overall System.- 9.4.5. What Can Go Wrong.- 9.5. Conclusion and Future.- 9.6. References.- 10 Statistics.- 10.1. Need for Statistical Considerations.- 10.1.1. Instrumental Errors.- 10.1.2. Statistical Errors.- 10.1.3. Appearance of Statistical Errors.- 10.1.4. Minimizing Statistical Errors.- 10.2. Basics.- 10.2.1. Probability of Occurrence.- 10.2.2. Statistical Arithmetic.- 10.3. Variables.- 10.3.1. Basic Variables.- 10.3.2. Secondary Variables.- 10.4. Conditions.- 10.4.1. General.- 10.4.2. Sample Count Large Compared to Background Count.- 10.4.3. Sample Count Small Compared to Background Count.- 10.4.4. Summary of Different Cases.- 10.5. Formulas for Standard Deviation, Detection limit, and Figure of Merit.- 10.5.1. Background Not Known Beforehand.- 10.5.2. Background Known Beforehand.- 10.5.3. Large Activities.- 10.6. Use of Formulas.- 10.6.1. Overview.- 10.6.2. Computer Program.- 10.6.3. Summary.- 10.7. References and Notes.- 11 Timing Circuits.- 11.1. Introduction.- 11.2. Timing Circuits.- 11.2.1. Electronic Clock.- 11.2.2. Coincidence Circuit.- 11.2.3. Time-Pick-Off Methods.- 11.2.4. Measurement of a Short Time Interval.- 11.2.5. Time Interval Spectrum.- 11.3. Applications of Timing Circuits.- 11.3.1. Short and Long Experiments.- 11.3.2. Measurement of Long Half-Lives.- 11.3.3. Measurement of Coincidences.- 11.3.4. Measurement of Short Half-Lives.- 11.3.5. Complete Data Handling in Timing Measurements.- 11.4. References and Notes.- 12 Use of Computers.- 12.1. Introduction.- 12.1.1. Defining the On-Line Computer.- 12.1.2. Advantages of Computer-Based Systems.- 12.1.3. Disadvantages of Computer-Based Systems.- 12.2. The Computer Interface.- 12.2.1. General.- 12.2.2. Analog-to-Digital Conversion.- 12.2.3. Typical Interface Features.- 12.3. Equipment Calibration.- 12.4. Data Acquisition.- 12.4.1. Entering and Manipulation.- 12.4.2. Transferring Data to the Computer.- 12.4.3. Storage of Data.- 12.5. Experiment Control and Monitoring.- 12.5.1. General Considerations.- 12.5.2. Common Peripherals.- 12.5.3. Experiment Setup.- 12.5.4. Experiment Monitoring.- 12.6. Computer-Based Multichannel Analyzers.- 12.6.1. The Data Explosion.- 12.6.2. General Considerations.- 12.6.3. Typical Experiments.- 12.7. Data Reduction.- 12.7.1. Reduction at Event Time.- 12.7.2. Reduction at Experiment Completion.- 12.8. Data Analysis.- 12.9. References.