This elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves; the viewpoint is mostly that of enumerative geometry. Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry. The book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers, geometers, and physicists working in the field.
Rezensionen / Stimmen
"The book seems to be ideally designed for a semester course or ambitious self-study." -Mathematical Reviews
"The book is intended to be a friendly introduction to quantum cohomology. It makes the reader acquainted with the notions of stable curves and stable maps, and their moduli spaces. These notions are central in the field. ... Each chapter ends with references for further readings, and also with a set of exercices which help fixing the ideas introduced in that chapter. This makes the book especially useful for graduate courses, and for graduate students who wish to learn about quantum cohomology." -Zentralblatt Math
".The book is ideal for self-study, as a text for a mini-course in quantum cohomology, or a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject" -Analele Stiintifice ale Universitatii "Al. I. Cuza" din Iasi