This book is an exposition of the main ideas of algebraic number theory. It is written for the non-expert. Therefore, beyond some algebra, there are almost no prerequisites.
Rezensionen / Stimmen
From the reviews: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Number theory is not easy and quite technical at several places, as the author is able to show in his technically good exposition. The amount of difficult material well exposed gives a survey of quite a lot of good solid classical number theory... Conclusion: for people not already familiar with this field this book is not so easy to read, but for the specialist in number theory this is a useful description of (classical) algebraic number theory." Medelingen van het wiskundig genootschap, 1995
Auflage
1st ed. 1992. 2nd printing 1997
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 16 mm
Gewicht
ISBN-13
978-3-540-63003-6 (9783540630036)
DOI
10.1007/978-3-642-58095-6
Schweitzer Klassifikation
1. Basic Number Theory.- 2. Class Field Theory.- 3. Galois Groups.- 4. Abelian Fields.- 5. Artin L-Functions and Galois Module Structure.- Appendix 1. Fields, Domains, and Complexes.- 1.1. Finite Field Extensions.- 1.2. Galois Theory.- 1.3. Domains.- 1.4. Complexes.- Appendix 2. Quadratic Residues.- Appendix 3. Locally Compact Groups.- 3.1. Locally Compact Abelian Groups.- 3.2. Restricted Products.- Appendix 4. Bernoulli Numbers.- Tables.- References.- Author Index.