We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space
Reihe
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Maße
Höhe: 24.2 cm
Breite: 17 cm
Gewicht
ISBN-13
978-3-540-17005-1 (9783540170051)
DOI
10.1007/978-3-642-61308-1
Schweitzer Klassifikation
I. Entire Functions.- II. Multidimensional Value Distribution Theory.- III. Invariant Metrics.- IV. Finiteness Theorems for Holomorphic Maps.- V. Holomorphic Maps in ? and the Problem of Holomorphic Equivalence.- VI. The Geometry of CR-Manifolds.- VII. Supersymmetry and Complex Geometry.- Author Index.