1. Electric Double Layers at Metals.- 1.1. Structure of the Double Layer.- 1.1.1. The Diffuse Layer.- 1.1.2. Stern-Grahame-Devanathan Model.- 1.1.3. Water Structure in the Double Layer.- 1.2. Methods of Investigation.- 1.2.1. Objectives of a Double-Layer Study.- 1.2.2. Classical Electrocapillary Curve.- 1.2.3. Capacitance Method.- 1.2.4. Ellipsometry.- 1.2.5. Radiotracer Measurements.- 1.2.6. Heat of Adsorption.- 1.2.7. Time Dependence.- 1.3. The Potential of Zero Charge.- 1.3.1. Nature of the Potential of Zero Charge.- 1.3.2. Importance of the Potential of Zero Charge.- 1.3.3. Methods of Determination of the Potential of Zero Charge.- 1.3.4. For Liquid Metals.- 1.3.5. For Solids.- 1.3.6. Numerical Values of the Absolute Potential Differences at an Interface.- 1.4. Forces in Contact Adsorption.- 1.5. Isotherms.- 1.6. Dielectric Constants in the Double Layer.- 1.7. Relaxation of Solvent Origin in the Double Layer.- 1.8. Double-Layer Properties as a Function of a Potential-Dependent Dipole Term.- 1.9. Adsorption of Undissociated Organic Molecules.- 1.10. Radicals on Electrodes.- 1.11. Double Layer on Solids.- 1.12. Oxygen on Electrodes.- 1.13. The Near Future in the Development of the Model of the Interface.- References.- 2. Electrode Kinetics.- 2.1. Nature of Electrochemical Reactions.- 2.2. Overpotential.- 2.3. Rate as a Function of Overpotential.- 2.4. Exchange Current Density.- 2.5. Rate Constants.- 2.6. The Symmetry Factor.- 2.7. The Transfer Coefficient.- 2.8. Stoichiometric Number.- 2.9. Stoichiometric Factors.- 2.10. Rate as a Function of Temperature.- 2.11. Comparative Reaction Rates of Isotopic Reactions.- 2.12. Chemical Surface Reactions.- 2.13. Consecutive Reaction Rates.- 2.14. Chemical Homogeneous Reactions.- 2.15. Effect of Mass Transport on Electrochemical Reactions.- 2.16. Electrode Kinetics as a Function of the Double-Layer Structure.- 2.17. Reaction Rates and Isotherms.- 2.18. Transients (Sweeps).- 2.19. Electric Equivalent Circuits.- 2.20. Electrocatalysis.- 2.21. Mechanisms.- 2.22. Electrocrystallization.- 2.23. Steps before Crystal Growth.- 2.24. Crystal Growth.- 2.25. Interphasial Charge Transfer in Engineering, Metallurgy, and Biology.- 2.26. Techniques of Study.- References.- 3. Quanta and Surfaces.- 3.1. Introduction.- 3.2. Quantum Particles.- 3.2.1. The Phonon.- 3.2.2. The Plasmon.- 3.2.3. The Polaron.- 3.2.4. The Exciton.- 3.3. Electron Distribution in the Metal Electrode.- 3.3.1. Fermi Distribution Law.- 3.3.2. Density of States.- 3.3.3. Fermi Surface.- 3.3.4. Cyclotron Resonance.- 3.4. Quantal Discussion of Surfaces.- 3.5. Theory of Surface States.- 3.6. Surface Energy.- 3.7. Quantum Mechanical Calculations of Adsorption Energy.- 3.8. Spectra of Adsorbed Atoms.- 3.9. Further Work on the Quantum Mechanics of Adsorbed Species.- 3.9.1. Ionic Adsorption.- 3.9.2. Other Treatments of Adsorption.- 3.10. Concluding Remarks.- References.- 4. Time-Dependent Perturbation Theory.- 4.1. Introduction.- 4.1.1. Time-Dependent Perturbation Theory in Kinetics.- 4.1.2. Radiationless Transition.- 4.2. General Background.- 4.3. An Interim Comment.- 4.4. Probability of Transition.- 4.5. Golden Rule for Transition Rates.- 4.5.1. A More Realistic Approach to the Calculation of the Probability of Transition.- 4.5.2. Calculation of Rate.- 4.6. Applicability of Time-Dependent Perturbation Theory (TDPT).- 4.7. Example of the Applicabilities of TDPT.- 4.8. Magnitude of the Perturbation.- 4.9. Relation of Time-Dependent Perturbation Theory to Reaction Kinetics.- 4.10. Perturbations by Electromagnetic Radiation: Bohr'1. Electric Double Layers at Metals.- 1.1. Structure of the Double Layer.- 1.1.1. The Diffuse Layer.- 1.1.2. Stern-Grahame-Devanathan Model.- 1.1.3. Water Structure in the Double Layer.- 1.2. Methods of Investigation.- 1.2.1. Objectives of a Double-Layer Study.- 1.2.2. Classical Electrocapillary Curve.- 1.2.3. Capacitance Method.- 1.2.4. Ellipsometry.- 1.2.5. Radiotracer Measurements.- 1.2.6. Heat of Adsorption.- 1.2.7. Time Dependence.- 1.3. The Potential of Zero Charge.- 1.3.1. Nature of the Potential of Zero Charge.- 1.3.2. Importance of the Potential of Zero Charge.- 1.3.3. Methods of Determination of the Potential of Zero Charge.- 1.3.4. For Liquid Metals.- 1.3.5. For Solids.- 1.3.6. Numerical Values of the Absolute Potential Differences at an Interface.- 1.4. Forces in Contact Adsorption.- 1.5. Isotherms.- 1.6. Dielectric Constants in the Double Layer.- 1.7. Relaxation of Solvent Origin in the Double Layer.- 1.8. Double-Layer Properties as a Function of a Potential-Dependent Dipole Term.- 1.9. Adsorption of Undissociated Organic Molecules.- 1.10. Radicals on Electrodes.- 1.11. Double Layer on Solids.- 1.12. Oxygen on Electrodes.- 1.13. The Near Future in the Development of the Model of the Interface.- References.- 2. Electrode Kinetics.- 2.1. Nature of Electrochemical Reactions.- 2.2. Overpotential.- 2.3. Rate as a Function of Overpotential.- 2.4. Exchange Current Density.- 2.5. Rate Constants.- 2.6. The Symmetry Factor.- 2.7. The Transfer Coefficient.- 2.8. Stoichiometric Number.- 2.9. Stoichiometric Factors.- 2.10. Rate as a Function of Temperature.- 2.11. Comparative Reaction Rates of Isotopic Reactions.- 2.12. Chemical Surface Reactions.- 2.13. Consecutive Reaction Rates.- 2.14. Chemical Homogeneous Reactions.- 2.15. Effect of Mass Transport on Electrochemical Reactions.- 2.16. Electrode Kinetics as a Function of the Double-Layer Structure.- 2.17. Reaction Rates and Isotherms.- 2.18. Transients (Sweeps).- 2.19. Electric Equivalent Circuits.- 2.20. Electrocatalysis.- 2.21. Mechanisms.- 2.22. Electrocrystallization.- 2.23. Steps before Crystal Growth.- 2.24. Crystal Growth.- 2.25. Interphasial Charge Transfer in Engineering, Metallurgy, and Biology.- 2.26. Techniques of Study.- References.- 3. Quanta and Surfaces.- 3.1. Introduction.- 3.2. Quantum Particles.- 3.2.1. The Phonon.- 3.2.2. The Plasmon.- 3.2.3. The Polaron.- 3.2.4. The Exciton.- 3.3. Electron Distribution in the Metal Electrode.- 3.3.1. Fermi Distribution Law.- 3.3.2. Density of States.- 3.3.3. Fermi Surface.- 3.3.4. Cyclotron Resonance.- 3.4. Quantal Discussion of Surfaces.- 3.5. Theory of Surface States.- 3.6. Surface Energy.- 3.7. Quantum Mechanical Calculations of Adsorption Energy.- 3.8. Spectra of Adsorbed Atoms.- 3.9. Further Work on the Quantum Mechanics of Adsorbed Species.- 3.9.1. Ionic Adsorption.- 3.9.2. Other Treatments of Adsorption.- 3.10. Concluding Remarks.- References.- 4. Time-Dependent Perturbation Theory.- 4.1. Introduction.- 4.1.1. Time-Dependent Perturbation Theory in Kinetics.- 4.1.2. Radiationless Transition.- 4.2. General Background.- 4.3. An Interim Comment.- 4.4. Probability of Transition.- 4.5. Golden Rule for Transition Rates.- 4.5.1. A More Realistic Approach to the Calculation of the Probability of Transition.- 4.5.2. Calculation of Rate.- 4.6. Applicability of Time-Dependent Perturbation Theory (TDPT).- 4.7. Example of the Applicabilities of TDPT.- 4.8. Magnitude of the Perturbation.- 4.9. Relation of Time-Dependent Perturbation Theory to Reaction Kinetics.- 4.10. Perturbations by Electromagnetic Radiation: Bohr's Resonance (Coherence) Condition.- 4.11. Constant Perturbation for Electron Transition at Interfaces: Gurney Condition of Radiationless Transfer of Electrons.- 4.12. Types of Perturbation: Adiabatic and Nonadiabatic.- References.- 5. Long-Range Radiationless Energy Transfer in Condensed Media.- 5.1. Introduction.- 5.2. Experimental Evidence for Radiationless Energy Transfer over Long Distances.- 5.3. Mechanisms of Radiationless Long-Range Energy Transfer.- 5.3.1. Resonance Transfer Mechanisms.- 5.3.2. The Exciton Theory.- 5.3.3. Energy Transfer by Polaron Motion.- References.- 6. Mechanisms of Activation.- 6.1. Mechanism of Activation in the Gas Phase.- 6.2. Conversion of Translational Energy during Collision.- 6.2.1. Translational Energy to Vibrational Energy.- 6.2.2. Translational Energy to Rotational Energy.- 6.3. Collisional Activation Model in Liquids.- 6.3.1. Expressions for the Free Energy of Activation in Liquid.- 6.3.2. Mechanism of Activation.- 6.4. Need for Alternate Activation Mechanisms in Condensed Media.- 6.5. Activation Due to Continuum Solvent Polarization Fluctuation.- 6.5.1. The Polaron Model.- 6.5.2. Frequency of a Fluctuation in the Energy of a Central Ion.- 6.6. An Expression for the Free Energy of Activation from the Continuum Solvent Polarization Fluctuation Model.- 6.7. Expression for Es.- 6.8. Formulation of Activation Energy.- 6.9. Comparison between Free Energy of Activation from Continuum Expressions and Experiment.- 6.10. Activation Due to Phonon-Vibron Coupling (PVC).- 6.11. Formulation of the Probability of Activation from the PVC Model.- References.- 7. The Continuum Theory.- 7.1. Introduction.- 7.2. Model of a Polar Solvent.- 7.2.1. Polarization of the Liquid and Its Fluctuations.- 7.2.2. Energy Associated with a Local Fluctuation of Polarization in a Solvent System.- 7.2.3. Hamiltonian for the Pure Solvent.- 7.2.4. Hamiltonian for the Total Reacting System in a Polar Solution (Ions, Electrons, and a Quasi-Continuum Solvent).- 7.3. Transition Probability of a Quantum Particle from Ion to Ion in the Original Levich-Dogonadze Treatment.- 7.4. Transition Probability in the Bond-Breaking Reactions.- 7.5. Recent Treatments of the Continuum Model.- 7.5.1. Schmickler-Vielstich Treatment.- 7.5.2. Kestner, Logan, and Jortner (KLJ) Treatment.- 7.5.3. Schmidt's Treatment.- 7.6. Difficultes of the Continuum Theory.- 7.6.1. Fluctuation in Continuum Theory.- 7.6.2. Comparison of the Continuum Theory with Experiment.- 7.7. Summary.- Appendix 7.1. Derivation of Pekar Hamiltonian.- References.- 8. Interfacial Electron Tunneling.- 8.1. Introduction.- 8.2. Solution of Schrodinger Equation: Particle at a Rectangular Potential Barrier.- 8.3. WKB Approximation and Tunneling through Barriers.- 8.3.1. Derivation of the WKB Wave Functions.- 8.3.2. Nature of the WKB Approximation.- 8.3.3. Transmission through a Barrier: WKB Tunneling Expression.- 8.4. Tunneling through an Eckart Potential Barrier.- 8.5. Gurney's Application of Gamow's Tunneling Theory to Electron Transfer at Interfaces.- 8.5.1. Neutralization of a Gaseous Ion at an Electrode.- 8.5.2. Neutralization of an Ion in Solution at the Electrode.- 8.5.3. Distribution of Acceptor Levels.- 8.5.4. Velocity of Interfacial Electron Transfer in the Original Gurney Quantum Mechanical Model.- 8.6. Tunneling through the Adsorbed Layer in Free Space.- 8.7. Electron Transfer through Adsorbed Layers in Solution.- Appendix 8.I. Derivation of Eq. (8.52) for the WKB Transmission Coefficient from WKB Wave Functions.- Appendix 8.II Solution of Eq. (8.68) and Derivation of Transmission Coefficient PT for Eckart Barrier.- References.- 9. Proton Transfer in Solution.- 9.1. Introduction.- 9.2. First Theory of Quantum Mechanical Transfer of Protons.- 9.3. Conway, Bockris, and Linton (CBL) Model of 1956.- 9.4. Eigen and De Maeyer'1. Electric Double Layers at Metals.- 1.1. Structure of the Double Layer.- 1.1.1. The Diffuse Layer.- 1.1.2. Stern-Grahame-Devanathan Model.- 1.1.3. Water Structure in the Double Layer.- 1.2. Methods of Investigation.- 1.2.1. Objectives of a Double-Layer Study.- 1.2.2. Classical Electrocapillary Curve.- 1.2.3. Capacitance Method.- 1.2.4. Ellipsometry.- 1.2.5. Radiotracer Measurements.- 1.2.6. Heat of Adsorption.- 1.2.7. Time Dependence.- 1.3. The Potential of Zero Charge.- 1.3.1. Nature of the Potential of Zero Charge.- 1.3.2. Importance of the Potential of Zero Charge.- 1.3.3. Methods of Determination of the Potential of Zero Charge.- 1.3.4. For Liquid Metals.- 1.3.5. For Solids.- 1.3.6. Numerical Values of the Absolute Potential Differences at an Interface.- 1.4. Forces in Contact Adsorption.- 1.5. Isotherms.- 1.6. Dielectric Constants in the Double Layer.- 1.7. Relaxation of Solvent Origin in the Double Layer.- 1.8. Double-Layer Properties as a Function of a Potential-Dependent Dipole Term.- 1.9. Adsorption of Undissociated Organic Molecules.- 1.10. Radicals on Electrodes.- 1.11. Double Layer on Solids.- 1.12. Oxygen on Electrodes.- 1.13. The Near Future in the Development of the Model of the Interface.- References.- 2. Electrode Kinetics.- 2.1. Nature of Electrochemical Reactions.- 2.2. Overpotential.- 2.3. Rate as a Function of Overpotential.- 2.4. Exchange Current Density.- 2.5. Rate Constants.- 2.6. The Symmetry Factor.- 2.7. The Transfer Coefficient.- 2.8. Stoichiometric Number.- 2.9. Stoichiometric Factors.- 2.10. Rate as a Function of Temperature.- 2.11. Comparative Reaction Rates of Isotopic Reactions.- 2.12. Chemical Surface Reactions.- 2.13. Consecutive Reaction Rates.- 2.14. Chemical Homogeneous Reactions.- 2.15. Effect of Mass Transport on Electrochemical Reactions.- 2.16. Electrode Kinetics as a Function of the Double-Layer Structure.- 2.17. Reaction Rates and Isotherms.- 2.18. Transients (Sweeps).- 2.19. Electric Equivalent Circuits.- 2.20. Electrocatalysis.- 2.21. Mechanisms.- 2.22. Electrocrystallization.- 2.23. Steps before Crystal Growth.- 2.24. Crystal Growth.- 2.25. Interphasial Charge Transfer in Engineering, Metallurgy, and Biology.- 2.26. Techniques of Study.- References.- 3. Quanta and Surfaces.- 3.1. Introduction.- 3.2. Quantum Particles.- 3.2.1. The Phonon.- 3.2.2. The Plasmon.- 3.2.3. The Polaron.- 3.2.4. The Exciton.- 3.3. Electron Distribution in the Metal Electrode.- 3.3.1. Fermi Distribution Law.- 3.3.2. Density of States.- 3.3.3. Fermi Surface.- 3.3.4. Cyclotron Resonance.- 3.4. Quantal Discussion of Surfaces.- 3.5. Theory of Surface States.- 3.6. Surface Energy.- 3.7. Quantum Mechanical Calculations of Adsorption Energy.- 3.8. Spectra of Adsorbed Atoms.- 3.9. Further Work on the Quantum Mechanics of Adsorbed Species.- 3.9.1. Ionic Adsorption.- 3.9.2. Other Treatments of Adsorption.- 3.10. Concluding Remarks.- References.- 4. Time-Dependent Perturbation Theory.- 4.1. Introduction.- 4.1.1. Time-Dependent Perturbation Theory in Kinetics.- 4.1.2. Radiationless Transition.- 4.2. General Background.- 4.3. An Interim Comment.- 4.4. Probability of Transition.- 4.5. Golden Rule for Transition Rates.- 4.5.1. A More Realistic Approach to the Calculation of the Probability of Transition.- 4.5.2. Calculation of Rate.- 4.6. Applicability of Time-Dependent Perturbation Theory (TDPT).- 4.7. Example of the Applicabilities of TDPT.- 4.8. Magnitude of the Perturbation.- 4.9. Relation of Time-Dependent Perturbation Theory to Reaction Kinetics.- 4.10. Perturbations by Electromagnetic Radiation: Bohr's Resonance (Coherence) Condition.- 4.11. Constant Perturbation for Electron Transition at Interfaces: Gurney Condition of Radiationless Transfer of Electrons.- 4.12. Types of Perturbation: Adiabatic and Nonadiabatic.- References.- 5. Long-Range Radiationless Energy Transfer in Condensed Media.- 5.1. Introduction.- 5.2. Experimental Evidence for Radiationless Energy Transfer over Long Distances.- 5.3. Mechanisms of Radiationless Long-Range Energy Transfer.- 5.3.1. Resonance Transfer Mechanisms.- 5.3.2. The Exciton Theory.- 5.3.3. Energy Transfer by Polaron Motion.- References.- 6. Mechanisms of Activation.- 6.1. Mechanism of Activation in the Gas Phase.- 6.2. Conversion of Translational Energy during Collision.- 6.2.1. Translational Energy to Vibrational Energy.- 6.2.2. Translational Energy to Rotational Energy.- 6.3. Collisional Activation Model in Liquids.- 6.3.1. Expressions for the Free Energy of Activation in Liquid.- 6.3.2. Mechanism of Activation.- 6.4. Need for Alternate Activation Mechanisms in Condensed Media.- 6.5. Activation Due to Continuum Solvent Polarization Fluctuation.- 6.5.1. The Polaron Model.- 6.5.2. Frequency of a Fluctuation in the Energy of a Central Ion.- 6.6. An Expression for the Free Energy of Activation from the Continuum Solvent Polarization Fluctuation Model.- 6.7. Expression for Es.- 6.8. Formulation of Activation Energy.- 6.9. Comparison between Free Energy of Activation from Continuum Expressions and Experiment.- 6.10. Activation Due to Phonon-Vibron Coupling (PVC).- 6.11. Formulation of the Probability of Activation from the PVC Model.- References.- 7. The Continuum Theory.- 7.1. Introduction.- 7.2. Model of a Polar Solvent.- 7.2.1. Polarization of the Liquid and Its Fluctuations.- 7.2.2. Energy Associated with a Local Fluctuation of Polarization in a Solvent System.- 7.2.3. Hamiltonian for the Pure Solvent.- 7.2.4. Hamiltonian for the Total Reacting System in a Polar Solution (Ions, Electrons, and a Quasi-Continuum Solvent).- 7.3. Transition Probability of a Quantum Particle from Ion to Ion in the Original Levich-Dogonadze Treatment.- 7.4. Transition Probability in the Bond-Breaking Reactions.- 7.5. Recent Treatments of the Continuum Model.- 7.5.1. Schmickler-Vielstich Treatment.- 7.5.2. Kestner, Logan, and Jortner (KLJ) Treatment.- 7.5.3. Schmidt's Treatment.- 7.6. Difficultes of the Continuum Theory.- 7.6.1. Fluctuation in Continuum Theory.- 7.6.2. Comparison of the Continuum Theory with Experiment.- 7.7. Summary.- Appendix 7.1. Derivation of Pekar Hamiltonian.- References.- 8. Interfacial Electron Tunneling.- 8.1. Introduction.- 8.2. Solution of Schrodinger Equation: Particle at a Rectangular Potential Barrier.- 8.3. WKB Approximation and Tunneling through Barriers.- 8.3.1. Derivation of the WKB Wave Functions.- 8.3.2. Nature of the WKB Approximation.- 8.3.3. Transmission through a Barrier: WKB Tunneling Expression.- 8.4. Tunneling through an Eckart Potential Barrier.- 8.5. Gurney's Application of Gamow's Tunneling Theory to Electron Transfer at Interfaces.- 8.5.1. Neutralization of a Gaseous Ion at an Electrode.- 8.5.2. Neutralization of an Ion in Solution at the Electrode.- 8.5.3. Distribution of Acceptor Levels.- 8.5.4. Velocity of Interfacial Electron Transfer in the Original Gurney Quantum Mechanical Model.- 8.6. Tunneling through the Adsorbed Layer in Free Space.- 8.7. Electron Transfer through Adsorbed Layers in Solution.- Appendix 8.I. Derivation of Eq. (8.52) for the WKB Transmission Coefficient from WKB Wave Functions.- Appendix 8.II Solution of Eq. (8.68) and Derivation of Transmission Coefficient PT for Eckart Barrier.- References.- 9. Proton Transfer in Solution.- 9.1. Introduction.- 9.2. First Theory of Quantum Mechanical Transfer of Protons.- 9.3. Conway, Bockris, and Linton (CBL) Model of 1956.- 9.4. Eigen and De Maeyer's Resonance (Coherence) Condition.- 4.11. Constant Perturbation for Electron Transition at Interfaces: Gurney Condition of Radiationless Transfer of Electrons.- 4.12. Types of Perturbation: Adiabatic and Nonadiabatic.- References.- 5. Long-Range Radiationless Energy Transfer in Condensed Media.- 5.1. Introduction.- 5.2. Experimental Evidence for Radiationless Energy Transfer over Long Distances.- 5.3. Mechanisms of Radiationless Long-Range Energy Transfer.- 5.3.1. Resonance Transfer Mechanisms.- 5.3.2. The Exciton Theory.- 5.3.3. Energy Transfer by Polaron Motion.- References.- 6. Mechanisms of Activation.- 6.1. Mechanism of Activation in the Gas Phase.- 6.2. Conversion of Translational Energy during Collision.- 6.2.1. Translational Energy to Vibrational Energy.- 6.2.2. Translational Energy to Rotational Energy.- 6.3. Collisional Activation Model in Liquids.- 6.3.1. Expressions for the Free Energy of Activation in Liquid.- 6.3.2. Mechanism of Activation.- 6.4. Need for Alternate Activation Mechanisms in Condensed Media.- 6.5. Activation Due to Continuum Solvent Polarization Fluctuation.- 6.5.1. The Polaron Model.- 6.5.2. Frequency of a Fluctuation in the Energy of a Central Ion.- 6.6. An Expression for the Free Energy of Activation from the Continuum Solvent Polarization Fluctuation Model.- 6.7. Expression for Es.- 6.8. Formulation of Activation Energy.- 6.9. Comparison between Free Energy of Activation from Continuum Expressions and Experiment.- 6.10. Activation Due to Phonon-Vibron Coupling (PVC).- 6.11. Formulation of the Probability of Activation from the PVC Model.- References.- 7. The Continuum Theory.- 7.1. Introduction.- 7.2. Model of a Polar Solvent.- 7.2.1. Polarization of the Liquid and Its Fluctuations.- 7.2.2. Energy Associated with a Local Fluctuation of Polarization in a Solvent System.- 7.2.3. Hamiltonian for the Pure Solvent.- 7.2.4. Hamiltonian for the Total Reacting System in a Polar Solution (Ions, Electrons, and a Quasi-Continuum Solvent).- 7.3. Transition Probability of a Quantum Particle from Ion to Ion in the Original Levich-Dogonadze Treatment.- 7.4. Transition Probability in the Bond-Breaking Reactions.- 7.5. Recent Treatments of the Continuum Model.- 7.5.1. Schmickler-Vielstich Treatment.- 7.5.2. Kestner, Logan, and Jortner (KLJ) Treatment.- 7.5.3. Schmidt's Treatment.- 7.6. Difficultes of the Continuum Theory.- 7.6.1. Fluctuation in Continuum Theory.- 7.6.2. Comparison of the Continuum Theory with Experiment.- 7.7. Summary.- Appendix 7.1. Derivation of Pekar Hamiltonian.- References.- 8. Interfacial Electron Tunneling.- 8.1. Introduction.- 8.2. Solution of Schrodinger Equation: Particle at a Rectangular Potential Barrier.- 8.3. WKB Approximation and Tunneling through Barriers.- 8.3.1. Derivation of the WKB Wave Functions.- 8.3.2. Nature of the WKB Approximation.- 8.3.3. Transmission through a Barrier: WKB Tunneling Expression.- 8.4. Tunneling through an Eckart Potential Barrier.- 8.5. Gurney's Application of Gamow's Tunneling Theory to Electron Transfer at Interfaces.- 8.5.1. Neutralization of a Gaseous Ion at an Electrode.- 8.5.2. Neutralization of an Ion in Solution at the Electrode.- 8.5.3. Distribution of Acceptor Levels.- 8.5.4. Velocity of Interfacial Electron Transfer in the Original Gurney Quantum Mechanical Model.- 8.6. Tunneling through the Adsorbed Layer in Free Space.- 8.7. Electron Transfer through Adsorbed Layers in Solution.- Appendix 8.I. Derivation of Eq. (8.52) for the WKB Transmission Coefficient from WKB Wave Functions.- Appendix 8.II Solution of Eq. (8.68) and Derivation of Transmission Coefficient PT for Eckart Barrier.- References.- 9. Proton Transfer in Solution.- 9.1. Introduction.- 9.2. First Theory of Quantum Mechanical Transfer of Protons.- 9.3. Conway, Bockris, and Linton (CBL) Model of 1956.- 9.4. Eigen and De Maeyer's Model.- 9.5. Polarization of the Hydrogen Bond and the Proton Transfer Mechanism.- 9.6. Lifetime of H3O+.- 9.7. Recent Quantum Mechanical Work on Proton Transfer in Solution.- 9.8. Application of Continuum Theories to Proton Transfer Reactions.- References.- 10. Proton Transfer at Interfaces.- 10.1. Introduction.- 10.2. Historical Perspective.- 10.3. The Proton-Associated Aspects of the Gurney Quantum Mechanical Model.- 10.4. Butler's Modification of Gurney's Model: Electrocatalysis.- 10.5. Rate-Determining Step and Path in Hydrogen Evolution.- 10.6 The Basic Role of the Calculation of Separation Factors.- 10.6.1. Calculation of the Separation Factor.- 10.6.2. Results of Separation-Factor Calculations.- 10.7. Quantum Character of Proton Transfer: Contributions of Christov.- 10.8. Quantum Character of Proton Transfer: Bockris and Matthews.- 10.8.1. Variation of the Separation Factor with Potential.- 10.9. Quantum Mechanical Interpretation of the Evolution of the Separation Factor with Potential.- 10.9.1. Quantum Mechanical Correction to Separation Factor.- 10.9.2. Results of Tunneling.- 10.9.3. Conclusion.- 10.10. Variation of the Symmetry Factor with Potential.- 10.11. A BEBO Approach to Proton Transfer Calculations.- 10.12. Double-Layer Model and Proton Transfer.- 10.13. Validity of the WKB Tunneling Expression.- 10.14. The Continuum Theory to Proton Transfer.- 10.14.1. Qualitative Discussion of the Continuum Model for Proton Transfer.- 10.14.2. Transition Probability of Proton from Continuum Treatments.- 10.15. Work of Kharkats and Ulstrup.- 10.16. Christov's Work on an Oscillator Model for Proton Transfer.- 10.17. Solvent Reorganizational Viewpoint in Proton Transfer Kinetics.- 10.17.1. Historical Aspects.- 10.17.2. Role Played by the Solvent.- 10.17.3. Isotopic Effects.- 10.17.4. Tafel Equation.- References.- 11. The Hydrated Electron.- 11.1. Introduction.- 11.2. Continuum Approach to the Hydrated Electron.- 11.3. Semicontinuum Model of the Hydrated Electron.- 11.3.1. Short-Range Energies of the Hydrated Electron.- 11.3.2. Long-Range Energies of the Hydrated Electron.- 11.3.3. Total Ground-State Energy of the Hydrated Electron.- 11.3.4. Excited-State Energy of the Hydrated Electron.- 11.3.5. Numerical Results of the Semicontinuum Treatment (from the SCF Approach).- 11.4. Structural Models for the Hydrated Electron.- 11.5. Theory of Electron Transfer Reaction from a Hydrated Electron to an Acceptor in Solution.- 11.5.1. Calculation of the Rate Constant kr.- 11.5.2. Calculation of the Free Energy of Activation ?F*.- 11.5.3. Numerical Results of ?F* and kr.- 11.6. Hydrated Electron in Photoelectrochemical Processes.- 11.6.1. Energetic Condition for the Production of Hydrated Electrons at an Electrode.- 11.6.2. Can There Be an Electrochemical Production of the Hydrated Electron?.- 11.6.3. Photoelectrochemical Production of the Hydrated Electron.- Appendix 11.I. Calculation of Orientational Polarization Energy of an Electron in a Solvent.- Appendix 11.II. Solution of Poisson Equation (11.2).- Appendix 11.III. Proof of Equation for Average Polarization Energy [Eq. (11.66b)].- References.- 12. Photoelectrochemical Kinetics.- 12.1. Introduction.- 12.2. Rate of Photoemission into a Vacuum.- 12.3. Rate of Photoemission into a Vacuum under an Electric Field.- 12.4. Quantum Mechanical Theory of the Photoemission Rate into an Electrolytic Solution.- 12.4.1. Models.- 12.4.2. Limitations of Brodskii's Resonance (Coherence) Condition.- 4.11. Constant Perturbation for Electron Transition at Interfaces: Gurney Condition of Radiationless Transfer of Electrons.- 4.12. Types of Perturbation: Adiabatic and Nonadiabatic.- References.- 5. Long-Range Radiationless Energy Transfer in Condensed Media.- 5.1. Introduction.- 5.2. Experimental Evidence for Radiationless Energy Transfer over Long Distances.- 5.3. Mechanisms of Radiationless Long-Range Energy Transfer.- 5.3.1. Resonance Transfer Mechanisms.- 5.3.2. The Exciton Theory.- 5.3.3. Energy Transfer by Polaron Motion.- References.- 6. Mechanisms of Activation.- 6.1. Mechanism of Activation in the Gas Phase.- 6.2. Conversion of Translational Energy during Collision.- 6.2.1. Translational Energy to Vibrational Energy.- 6.2.2. Translational Energy to Rotational Energy.- 6.3. Collisional Activation Model in Liquids.- 6.3.1. Expressions for the Free Energy of Activation in Liquid.- 6.3.2. Mechanism of Activation.- 6.4. Need for Alternate Activation Mechanisms in Condensed Media.- 6.5. Activation Due to Continuum Solvent Polarization Fluctuation.- 6.5.1. The Polaron Model.- 6.5.2. Frequency of a Fluctuation in the Energy of a Central Ion.- 6.6. An Expression for the Free Energy of Activation from the Continuum Solvent Polarization Fluctuation Model.- 6.7. Expression for Es.- 6.8. Formulation of Activation Energy.- 6.9. Comparison between Free Energy of Activation from Continuum Expressions and Experiment.- 6.10. Activation Due to Phonon-Vibron Coupling (PVC).- 6.11. Formulation of the Probability of Activation from the PVC Model.- References.- 7. The Continuum Theory.- 7.1. Introduction.- 7.2. Model of a Polar Solvent.- 7.2.1. Polarization of the Liquid and Its Fluctuations.- 7.2.2. Energy Associated with a Local Fluctuation of Polarization in a Solvent System.- 7.2.3. Hamiltonian for the Pure Solvent.- 7.2.4. Hamiltonian for the Total Reacting System in a Polar Solution (Ions, Electrons, and a Quasi-Continuum Solvent).- 7.3. Transition Probability of a Quantum Particle from Ion to Ion in the Original Levich-Dogonadze Treatment.- 7.4. Transition Probability in the Bond-Breaking Reactions.- 7.5. Recent Treatments of the Continuum Model.- 7.5.1. Schmickler-Vielstich Treatment.- 7.5.2. Kestner, Logan, and Jortner (KLJ) Treatment.- 7.5.3. Schmidt's Treatment.- 7.6. Difficultes of the Continuum Theory.- 7.6.1. Fluctuation in Continuum Theory.- 7.6.2. Comparison of the Continuum Theory with Experiment.- 7.7. Summary.- Appendix 7.1. Derivation of Pekar Hamiltonian.- References.- 8. Interfacial Electron Tunneling.- 8.1. Introduction.- 8.2. Solution of Schrodinger Equation: Particle at a Rectangular Potential Barrier.- 8.3. WKB Approximation and Tunneling through Barriers.- 8.3.1. Derivation of the WKB Wave Functions.- 8.3.2. Nature of the WKB Approximation.- 8.3.3. Transmission through a Barrier: WKB Tunneling Expression.- 8.4. Tunneling through an Eckart Potential Barrier.- 8.5. Gurney's Application of Gamow's Tunneling Theory to Electron Transfer at Interfaces.- 8.5.1. Neutralization of a Gaseous Ion at an Electrode.- 8.5.2. Neutralization of an Ion in Solution at the Electrode.- 8.5.3. Distribution of Acceptor Levels.- 8.5.4. Velocity of Interfacial Electron Transfer in the Original Gurney Quantum Mechanical Model.- 8.6. Tunneling through the Adsorbed Layer in Free Space.- 8.7. Electron Transfer through Adsorbed Layers in Solution.- Appendix 8.I. Derivation of Eq. (8.52) for the WKB Transmission Coefficient from WKB Wave Functions.- Appendix 8.II Solution of Eq. (8.68) and Derivation of Transmission Coefficient PT for Eckart Barrier.- References.- 9. Proton Transfer in Solution.- 9.1. Introduction.- 9.2. First Theory of Quantum Mechanical Transfer of Protons.- 9.3. Conway, Bockris, and Linton (CBL) Model of 1956.- 9.4. Eigen and De Maeyer's Model.- 9.5. Polarization of the Hydrogen Bond and the Proton Transfer Mechanism.- 9.6. Lifetime of H3O+.- 9.7. Recent Quantum Mechanical Work on Proton Transfer in Solution.- 9.8. Application of Continuum Theories to Proton Transfer Reactions.- References.- 10. Proton Transfer at Interfaces.- 10.1. Introduction.- 10.2. Historical Perspective.- 10.3. The Proton-Associated Aspects of the Gurney Quantum Mechanical Model.- 10.4. Butler's Modification of Gurney's Model: Electrocatalysis.- 10.5. Rate-Determining Step and Path in Hydrogen Evolution.- 10.6 The Basic Role of the Calculation of Separation Factors.- 10.6.1. Calculation of the Separation Factor.- 10.6.2. Results of Separation-Factor Calculations.- 10.7. Quantum Character of Proton Transfer: Contributions of Christov.- 10.8. Quantum Character of Proton Transfer: Bockris and Matthews.- 10.8.1. Variation of the Separation Factor with Potential.- 10.9. Quantum Mechanical Interpretation of the Evolution of the Separation Factor with Potential.- 10.9.1. Quantum Mechanical Correction to Separation Factor.- 10.9.2. Results of Tunneling.- 10.9.3. Conclusion.- 10.10. Variation of the Symmetry Factor with Potential.- 10.11. A BEBO Approach to Proton Transfer Calculations.- 10.12. Double-Layer Model and Proton Transfer.- 10.13. Validity of the WKB Tunneling Expression.- 10.14. The Continuum Theory to Proton Transfer.- 10.14.1. Qualitative Discussion of the Continuum Model for Proton Transfer.- 10.14.2. Transition Probability of Proton from Continuum Treatments.- 10.15. Work of Kharkats and Ulstrup.- 10.16. Christov's Work on an Oscillator Model for Proton Transfer.- 10.17. Solvent Reorganizational Viewpoint in Proton Transfer Kinetics.- 10.17.1. Historical Aspects.- 10.17.2. Role Played by the Solvent.- 10.17.3. Isotopic Effects.- 10.17.4. Tafel Equation.- References.- 11. The Hydrated Electron.- 11.1. Introduction.- 11.2. Continuum Approach to the Hydrated Electron.- 11.3. Semicontinuum Model of the Hydrated Electron.- 11.3.1. Short-Range Energies of the Hydrated Electron.- 11.3.2. Long-Range Energies of the Hydrated Electron.- 11.3.3. Total Ground-State Energy of the Hydrated Electron.- 11.3.4. Excited-State Energy of the Hydrated Electron.- 11.3.5. Numerical Results of the Semicontinuum Treatment (from the SCF Approach).- 11.4. Structural Models for the Hydrated Electron.- 11.5. Theory of Electron Transfer Reaction from a Hydrated Electron to an Acceptor in Solution.- 11.5.1. Calculation of the Rate Constant kr.- 11.5.2. Calculation of the Free Energy of Activation ?F*.- 11.5.3. Numerical Results of ?F* and kr.- 11.6. Hydrated Electron in Photoelectrochemical Processes.- 11.6.1. Energetic Condition for the Production of Hydrated Electrons at an Electrode.- 11.6.2. Can There Be an Electrochemical Production of the Hydrated Electron?.- 11.6.3. Photoelectrochemical Production of the Hydrated Electron.- Appendix 11.I. Calculation of Orientational Polarization Energy of an Electron in a Solvent.- Appendix 11.II. Solution of Poisson Equation (11.2).- Appendix 11.III. Proof of Equation for Average Polarization Energy [Eq. (11.66b)].- References.- 12. Photoelectrochemical Kinetics.- 12.1. Introduction.- 12.2. Rate of Photoemission into a Vacuum.- 12.3. Rate of Photoemission into a Vacuum under an Electric Field.- 12.4. Quantum Mechanical Theory of the Photoemission Rate into an Electrolytic Solution.- 12.4.1. Models.- 12.4.2. Limitations of Brodskii's Quantum Mechanical Treatment of Photoemission.- 12.5. Theory of Photoelectrochemical Kinetics.- 12.5.1. Introduction.- 12.5.2. The BKU Theory.- 12.5.3. Photocurrent from the BKU Theory.- 12.5.4. Computation of the Photocurrent from the BKU Expression.- 12.5.5. Non-Tafel Behavior of the Photocurrent.- 12.5.6. Limitations of the BKU Theory.- 12.6. Photoeffects on Semiconductor Electrodes.- 12.6.1. Photoeffect on a Cathodic Current at a p-Type Semiconductor-Solution Interface.- 12.6.2. Photoeffect on the Anodic Current at an n-Type Semiconductor.- 12.6.3. Results of the Calculation of Photocurrent for p-and n-Type Semiconductors.- 12.7. The Whole-Cell System.- 12.7.1. Relation between the Potential of an Electrode and a Cell.- 12.7.2. Calculated Hydrogen Production Rate from Solar Energy Using TiO2 Photodriven Cells.- 12.8. Gurevich's Model for the Semiconductor-Electrolyte Interface.- References.- 13. Quantum Electrode Kinetics.- 13.1. Introduction.- 13.2. Quantum Theory of the Electrochemical Current Density and Tafel behavior.- 13.3. Relations between Spectroscopic and Electrochemical Transitions.- 13.4. Adiabaticity and Nonadiabaticity in Electron Transfer Processes.- 13.5. Time-Dependent Perturbation Theory of Electron Transfer at Electrodes.- 13.5.1. Transition Probability of Electrons from Electrodes.- 13.5.2. KWB Model for the Calculation of the Transition Probability.- 13.5.3. Unperturbed 3d State Wave Function of the Fe2+ Ion.- 13.5.4. Perturbed 3d State Wave Function of the Fe2+(H2O)6 Ion.- 13.5.5. Transition Probability Using the Perturbed Wave Function $$\psi _d^{(1)}$$ of the Fe2+(H2O)6 Ion.- 13.5.6. Transition Probability: Quantitative.- 13.5.7. Results: Transition Probability.- 13.5.8. Transition Probability from Gamow's Equation.- 13.5.9. Potential Dependence of the Transition Probability.- 13.6. Quantum Theory of Electrochemical Processes at Semiconductor Electrodes.- References.