d + 1-dimensional manifold, whose is a union of d-dimensional boundary disjoint v manifolds and d, a linear : -+ The manifold -Zod V(Md+l) V(Zod) V(Zld). ma- is with the orientation. The axiom in that z0g, Zod opposite gluing [Ati88] requires if we two such d + 1-manifolds a common d-subma- glue together along (closed) fold of in their the linear for the has to be the boundaries, composite compo- map tion of the linear of the individual d + 1-manifolds. maps the of and as in we can state categories functors, [Mac88], Using language axioms as follows: concisely Atiyah's very Definition 0.1.1 A in dimension d is a ([Ati88]). topological quantumfield theory between monoidal functor symmetric categories [Mac881 asfollows: V : --+ k-vect. Cobd+1 finite Here k-vect denotes the whose are dimensional v- category, objects for field tor over a field k, which we assume to be instance, a perfect, spaces The of of characteristic 0. set between two vector is morphisms, simply spaces the set of linear with the usual The has as composition. category Cobd+1 maps manifolds. such closed oriented d-dimensional A between two objects morphism.
Zd d oriented d 1-- d-manifolds and is a + 1-cobordism, an + Zod meaning gMd+l = Zd is the d- mensional manifold, Md+l, whose Lj boundary _ZOd of the d-manifolds. consider union two we as joint (Strictly speaking morphisms cobordisms modulo relative Given another or homeomorphisms diffeomorphisms).
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 22 mm
Gewicht
ISBN-13
978-3-540-42416-1 (9783540424161)
DOI
Schweitzer Klassifikation
and Summary of Results.- The Double Category of Framed, Relative 3-Cobordisms.- Tangle-Categories and Presentation of Cobordisms.- Isomorphism between Tangle and Cobordism Double Categories.- Monoidal categories and monoidal 2-categories.- Coends and construction of Hopf algebras.- Construction of TQFT-Double Functors.- Generalization of a modular functor.- From Quantum Field Theory to Axiomatics.- Double Categories and Double Functors.- Thick tangles.