This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins.
The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.
Rezensionen / Stimmen
"This extremely useful volume provides a self-contained treatment of the construction of 3-manifold invariants directly from the combinatorics of the Jones polynomial in Kauffman's bracket formulation."--Mathematical Reviews
Reihe
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Für höhere Schule und Studium
Produkt-Hinweis
Illustrationen
Maße
Höhe: 234 mm
Breite: 156 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-0-691-03640-3 (9780691036403)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Louis H. Kauffman is Professor of Mathematics at the University of Illinois, Chicago. Sostenes Lins is Professor of Mathematics at the Universidade Federal de Pernambuco in Recife, Brazil.
1Introduction12Bracket Polynomial, Temperley-Lieb Algebra53Jones-Wenzl Projectors134The 3-Vertex225Properties of Projectors and 3-Vertices366[theta]-Evaluations457Recoupling Theory Via Temperley-Lieb Algebra608Chromatic Evaluations and the Tetrahedron769A Summary of Recoupling Theory9310A 3-Manifold Invariant by State Summation10211The Shadow World11412The Witten-Reshetikhin-Turaev Invariant12913Blinks [actual symbol not reproducible] 3-Gems: Recognizing 3-Manifolds16014Tables of Quantum Invariants185Bibliography290Index295