*Frontmatter, pg. i*Contents, pg. v*Introduction, pg. 1*CHAPTER 1. Breaks and Swan Conductors, pg. 12*CHAPTER 2. Curves and Their Cohomology, pg. 26*CHAPTER 3. Equidistribution in Equal Characteristic, pg. 36*CHAPTER 4. Gauss Sums and Kloosterman Sums: Kloosterman Sheaves, pg. 46*CHAPTER 5. Convolution of Sheaves on Gm, pg. 62*CHAPTER 6. Local Convolution, pg. 87*CHAPTER 7. Local Monodromy at Zero of a Convolution: Detailed Study, pg. 96*CHAPTER 8. Complements on Convolution, pg. 120*CHAPTER 9. Equidistribution in (S1)r of r-tuples of Angles of Gauss Sums, pg. 155*CHAPTER 10. Local Monodromy at of Kloosterman Sheaves, pg. 168*CHAPTER 11. Global Monodromy of Kloosterman Sheaves, pg. 176*CHAPTER 12. Integral Monodromy of Kloosterman Sheaves (d'apres O. Gabber), pg. 210*CHAPTER 13. Equidistribution of "Angles" of Kloosterman Sums, pg. 234*References, pg. 243