We study the higher Frobenius-Schur indicators of modules over semisimple Hopf algebras, and relate them to other invariants as the exponent, the order, and the index. We prove various divisibility and integrality results for these invariants. In particular, we prove a version of Cauchy's theorem for semisimple Hopf algebras. Furthermore, we give some examples that illustrate the general theory.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
Gewicht
ISBN-13
978-0-8218-3886-0 (9780821838860)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Introduction The calculus of Sweedler powers Frobenius-Schur indicators The exponent The order The index The Drinfel'd double Examples Bibliography Subject index Symbol index.