This text is based on lectures given by the author at the advanced undergraduate and graduate levels in Measure Theory, Functional Analysis, Banach Algebras, Spectral Theory (of bounded and unbounded operators), Semigroups of Operators, Probability and Mathematical Statistics, and Partial Differential Equations. The first 10 chapters discuss theoretical methods in Measure Theory and Functional Analysis, and contain over 120 end of chapter exercises. The final two
chapters apply theory to applications in Probability Theory and Partial Differential Equations.
The Measure Theory chapters discuss the Lebesgue-Radon-Nikodym theorem which is given the Von Neumann Hilbert space proof. Also included are the relatively advanced topics of Haar measure, differentiability of complex Borel measures in Euclidean space with respect to Lebesgue measure, and the Marcinkiewicz' interpolation theorem for operators between Lebesgue spaces.
The Functional Analysis chapters cover the usual material on Banach spaces, weak topologies, separation, extremal points, the Stone-Weierstrass theorem, Hilbert spaces, Banach algebras, and Spectral Theory for both bounded and unbounded operators. Relatively advanced topics such as the Gelfand-Naimark-Segal representation theorem and the Von Neumann double commutant theorem are included.
The final two chapters deal with applications, where the measure theory and functional analysis methods of the first ten chapters are applied to Probability Theory and the Theory of Distributions and PDE's. Again, some advanced topics are included, such as the Lyapounov Central Limit theorem, the Kolmogoroff "Three Series theorem", the Ehrenpreis-Malgrange-Hormander theorem on fundamental solutions, and Hormander's theory of convolution operators.
The Oxford Graduate Texts in Mathematics series aim is to publish textbooks suitable for graduate students in mathematics and its applications. The level of books may range from some suitable for advanced undergraduate courses at one end, to others of interest to research workers. The emphasis is on texts of high mathematical quality in active areas, particularly areas that are not well represented in the literature at present.
Rezensionen / Stimmen
The book can be viewed as a multi-purpose text for advanced undergraduate and graduate students, and can be recommended for mathematical libraries. * EMS * The author offers a refreshingly unorthodox and lucid version of "modern analysis" ... All in all, this book is a valuable and pleasant contribution to the wide field of "modern analysis". * MathSolNet (Mathematical Reviews on the Web) * ... offers a refreshingly unorthodox and lucid version of "modern analysis" ... a valuable and pleasant contribution to the wide field of "modern analysis". * MathSolNet (Mathematical Reviews on the Web) * ... will be useful for advanced undergraduate and graduate students in mathematics. * Zentralblatt Math *
Reihe
Sprache
Verlagsort
Zielgruppe
Maße
Höhe: 240 mm
Breite: 160 mm
Dicke: 29 mm
Gewicht
ISBN-13
978-0-19-852656-8 (9780198526568)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Autor*in
Professor of Mathematics, Bar-Ilan Univerity, Israel
Preface ; 1. Measures ; 2. Construction of Measures ; 3. Measure and Topology ; 4. Continuous Linear Functionals ; 5. Duality ; 6. Bounded Operators ; 7. Banach Algebras ; 8. Hilbert Spaces ; 9. Intergral Representation ; 10. Unbounded Operators ; Application I:Probability ; Application II: Distributions ; Bibliography ; Index