This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.
Rezensionen / Stimmen
Aus den Rezensionen: "... bietet mit den Kursausarbeitungen eine gute Einstiegsmoglichkeit fur interessierte Leser, die die algebraische Lie Theorie besser kennenlernen wollen." (D. BURDE, in: Monatshefte fur Mathematik, Januar/2013, Vol. 169, Issue 1, S. 122 f.)
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Research
Illustrationen
4
4 s/w Abbildungen
XV, 227 p. 4 illus.
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-0-8176-8273-6 (9780817682736)
DOI
10.1007/978-0-8176-8274-3
Schweitzer Klassifikation
Preface.- Part I: The Courses.- 1 Spherical Varieties.- 2 Consequences of the Littelmann Path Model for the Structure of the Kashiwara B(8) Crystal.- 3 Structure and Representation Theory of Kac-Moody Superalgebras.- 4 Categories of Harish-Chandra Modules.- 5 Generalized Harish-Chandra Modules.- Part II: The Papers.- 6 B-Orbits of 2-Nilpotent Matrices.- 7 The Weyl Denominator Identity for Finite-Dimensional Lie Superalgebras.- 8 Hopf Algebras and Frobenius Algebras in Finite Tensor Categories.- 9 Mutation Classes of 3 x 3 Generalized Cartan Matrices.- 10 Contractions and Polynomial Lie Algebras.