Formulas and classes.- Axioms of Zermelo-Fraenkel.- Ordinal numbers.- Cardinal numbers.- Finite sets.- Real numbers.- Axiom of choice.- Cardinal arithmetic.- Axiom of regularity.- Transitive models.- Constructible sets.- Consistency of AC and GCH.- More on transitive models.- Ordinal definability.- Remarks on complete boolean algebras.- The method of forcing and boolean - valued models.- Independence of the continuum hypothesis and collapsing of cardinals.- Two applications of boolean-valued models in the theory of boolean algebras.- Lebesgue measurability.- Suslin's problem.- Martin's axiom.- Perfect forcing.- Remark on ordinal definability.- Independence of AC.- Fraenkel-mostowski models.- Embedding of FM models in models of ZF.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 9 mm
Gewicht
ISBN-13
978-3-540-05564-8 (9783540055648)
DOI
Schweitzer Klassifikation
Formulas and classes.- Axioms of Zermelo-Fraenkel.- Ordinal numbers.- Cardinal numbers.- Finite sets.- Real numbers.- Axiom of choice.- Cardinal arithmetic.- Axiom of regularity.- Transitive models.- Constructible sets.- Consistency of AC and GCH.- More on transitive models.- Ordinal definability.- Remarks on complete boolean algebras.- The method of forcing and boolean - valued models.- Independence of the continuum hypothesis and collapsing of cardinals.- Two applications of boolean-valued models in the theory of boolean algebras.- Lebesgue measurability.- Suslin's problem.- Martin's axiom.- Perfect forcing.- Remark on ordinal definability.- Independence of AC.- Fraenkel-mostowski models.- Embedding of FM models in models of ZF.