With examples and clear explanation throughout, this step-by-step approach makes quantum theory of plasmons accessible to readers without specialized training in theory. Jacak uses original research results to offer a fully analytical theory formulation suitable for further development and applications. The theory is focused on the Random Phase Approximation description of plasmons in metallic nano-structures, previously defined for bulk metal. Particular attention is paid to large damping of plasmons in nanostructures including electron scattering and Lorentz friction losses, quantum description of plasmon photovoltaic effect is presented and there is in-depth analysis of plasmon-polariton kinetics in metallic nano-chains. Suitable for students in the field of plasmonics, opto-electronics and photonics, and for researchers active in the field of photo-voltaics, opto-electronics, nano-plasmonics and nano-photonics. Also of help to researchers in soft plasmonics with applications to electro-signalling in neurons.
Sprache
Verlagsort
Zielgruppe
Editions-Typ
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Illustrationen
Worked examples or Exercises
Maße
Höhe: 244 mm
Breite: 170 mm
Dicke: 19 mm
Gewicht
ISBN-13
978-1-108-47839-7 (9781108478397)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Witold A. Jacak is Associate Professor at Politechnika Wroclawska, Poland. He is a theoretical physicist active in the fields of nano-plasmonics, quantum mechanics, decoherence in quantum dots, quantum information and quantum communication.
Autor*in
Politechnika Wroclawska, Poland
1. Introduction and description of contents; 2. Physics of metals{preliminaries; 3. Quasiclassical description of plasmons in bulk metal; 4. Plasmon excitations in nanometer-size metallic particles; 5. Damping of plasmons in metallic nanoparticles; 6. Plasmon photovoltaic effect; 7. Plasmon-induced enhancement of efficiency of solar cells modified by metallic nanoparticles: material dependence; 8. Numerical simulation of plasmon photo-effect; 9. Plasmon-polaritons in metallic nanoparticle chains; 10. Plasmon-polariton kinetics in metallic nano-chain located in absorbing surroundings; 11. Plasmons in finite spherical ionic systems; 12. Plasmon-polaritons in a chain of finite ionic systems-model of saltatory conduction in myelinated axons; Bibliography; Index.