The Atiyah-Singer index theorem is one of the most powerful tools for relating geometry, analysis, and topology. In its original form, however, it applies only to compact manifolds. This book describes a version of index theory which works for noncompact spaces with appropriate control, such as complete Riemannian manifolds. The relevant 'control' is provided by the large scale geometry of the space, and basic notions of large scale geometry are developed. Index theory for the signature operator is related to geometric topology via surgery theory. And, paralleling the analytic development, 'controlled' surgery theories for noncompact spaces have been developed by topologists.This book explores the connections between these theories, producing a natural transformation from surgery to 'analytic surgery'. The analytic foundations of the work come from the theory of $C^*$-algebras, and the properties of the $C^*$-algebra of a coarse space are developed in detail. The book is based on lectures presented at a conference held in Boulder, Colorado, in August 1995 and includes the author's detailed notes and descriptions of some constructions that were finalized after the lectures were delivered. Also available from the AMS by John Roe is Lectures on Coarse Geometry.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
ISBN-13
978-0-8218-0413-1 (9780821804131)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation
Index theory (Chapter 1) Coarse geometry (Chapter 2) $C*$-algebras (Chapter 3) An example of a higher index theorem (Chapter 4) Assembly (Chapter 5) Surgery (Chapter 6) Mapping surgery to analysis (Chapter 7) The coarse Baum-Connes conjecture (Chapter 8) Methods of computation (Chapter 9) Coarse structures and boundaries (Chapter 10) References Index.