This seminal text on Fourier-Mukai Transforms in Algebraic Geometry by a leading researcher and expositor is based on a course given at the Institut de Mathematiques de Jussieu in 2004 and 2005. Aimed at postgraduate students with a basic knowledge of algebraic geometry, the key aspect of this book is the derived category of coherent sheaves on a smooth projective variety. Including notions from other areas, e.g. singular cohomology, Hodge theory, abelian varieties, K3 surfaces; full proofs are given and exercises aid the reader throughout.
Rezensionen / Stimmen
It is a very good starting point to explore open problems related to derived categories, such as for example moduli space problems and birational classification. * Marcello Bernardara, Zentralblatt MATH Vol 1095 *
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Illustrationen
114 Zeichnungen
114 line drawings
Maße
Höhe: 241 mm
Breite: 164 mm
Dicke: 24 mm
Gewicht
ISBN-13
978-0-19-929686-6 (9780199296866)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Daniel Huybrechts completed his Ph.D. in 1992 at the Universitaet Berlin. He is now a professor at the Institut de Mathematiques de Jussieu, Universite Paris VII.
Autor*in
Mathematisches Institut, Universitaet Bonn
Preface ; 1. Triangulated categories ; 2. Derived categories: a quick tour ; 3. Derived categories of coherent sheaves ; 4. Derived category and canonical bundle I ; 5. Fourier-Mukai transforms ; 6. Derived category and canonical bundle II ; 7. Equivalence criteria for Fourier-Mukai transforms ; 8. Spherical and exceptional objects ; 9. Abelian varieties ; 10. K3 surfaces ; 11. Flips and flops ; 12. Derived categories of surfaces ; 13. Where to go from here ; References ; Index