In this work we study two non-classical features of quantum compound systems, namely, entanglement and indistinguishability using logical and algebraic techniques. First, we study improper mixtures from a quantum logical and geometrical point of view. This is done by extending the von Neumann lattice of propositions in order to include improper mixtures as atoms of the new lattice. Then, we study the problem of quantum non-individuality. We use a quantum structure which is a modification of Zermelo-Frenkel set-theory based on quantum mechanics, namely, Quasi-set Theory (Q). Using Q we develop a new formulation of quantum mechanics which does not uses first order identity on its logical bases. These constructions answer interesting discussions posed in the literature.
Sprache
Produkt-Hinweis
Broschur/Paperback
Klebebindung
Maße
Höhe: 220 mm
Breite: 150 mm
Dicke: 5 mm
Gewicht
ISBN-13
978-3-639-66177-4 (9783639661774)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Doctor en Física. Defendió su Tesis de Doctorado en la Universidad de Buenos Aires (Argentina). Realizó estancias postdoctorales en el Instituto de Física La Plata (Argentina) y en la Université Paris Diderot (Francia). Actualmente es investigador asistente del CONICET en el Instituto de Física La Plata.