In the second printing of these two volumes 305 and 306 the authors have made various local improvements and corrections, and updated the bibliography. The index has been considerably augmented and refined.
Rezensionen / Stimmen
From the reviews: "... The book is very well written, nicely illustrated, and clearly understandable even for senior undergraduate students of mathematics... Throughout the book, the authors carefully follow the recommendation by A. Einstein: 'Everything should be made as simple as possible, but not simpler.'"
Reihe
Auflage
1st ed. Softcover of orig. ed. 1993
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 24 mm
Gewicht
ISBN-13
978-3-642-08161-3 (9783642081613)
DOI
10.1007/978-3-662-02796-7
Schweitzer Klassifikation
Table of Contents Part I.- I. Convex Functions of One Real Variable.- II. Introduction to Optimization Algorithms.- III. Convex Sets.- IV. Convex Functions of Several Variables.- V. Sublinearity and Support Functions.- VI. Subdifferentials of Finite Convex Functions.- VII. Constrained Convex Minimization Problems: Minimality Conditions, Elements of Duality Theory.- VIII. Descent Theory for Convex Minimization: The Case of Complete Information.- Appendix: Notations.- 1 Some Facts About Optimization.- 2 The Set of Extended Real Numbers.- 3 Linear and Bilinear Algebra.- 4 Differentiation in a Euclidean Space.- 5 Set-Valued Analysis.- 6 A Bird's Eye View of Measure Theory and Integration.- Bibliographical Comments.- References.