I Background Information.- 1. Introduction.- 1.1 Thin Film Growth from Beams in a High Vacuum Environment.- 1.1.1 Vacuum Conditions for MBE.- 1.1.2 Basic Physical Processes in the MBE Vacuum Chamber.- 1.2 Evolution of the MBE Technique.- 1.2.1 The Early Stages of MBE.- 1.2.2 MBE in the 1980s.- 1.3 Modifications of the MBE Technique.- 1.3.1 Gas Source MBE.- 1.3.2 Phase-Locked Epitaxy.- 1.3.3 Atomic Layer Epitaxy.- 1.3.4 FIBI-MBE Processing Technology.- 1.3.5 A Classification Scheme for the MBE Techniques.- II Technological Equipment.- 2. Sources of Atomic and Molecular Beams.- 2.1 The Effusion Process and the Ideal Effusion Cell.- 2.1.1 Langmuir and Knudsen Modes of Evaporation.- 2.1.2 The Cosine Law of Effusion.- 2.2 Effusion from Real Effusion Cells.- 2.2.1 The Near-Ideal Cylindrical Effusion Cell.- 2.2.2 The Cylindrical Channel Effusion Cell.- 2.2.3 Hot-Wall Beam Cylindrical Source.- 2.2.4 The Conical Effusion Cell.- 2.3 Effusion Cells Used in CPS MBE Systems.- 2.3.1 Conventional Effusion Cells.- 2.3.2 Dissociation (Cracker) Effusion Cells.- 2.3.3 Electron Beam and Laser Radiation Heated Sources.- 2.4 Beam Sources Used in GS MBE Systems.- 2.4.1 Arsine and Phosphine Gas Source Crackers.- 2.4.2 Gas Sources Used in MO MBE.- 3. High Vacuum Growth and Processing Systems.- 3.1 Building Blocks of Modular MBE Systems.- 3.1.1 The Cassette Entry Stage.- 3.1.2 The Interstage Substrate Transfer System.- 3.1.3 The Preparation and Analysis Stages.- 3.1.4 The MBE Deposition Chamber.- 3.1.5 Beam Sources.- 3.1.6 Monitoring and Analytical Facilities.- 3.2 Multiple-Growth and Multiple-Process Facilities in MBE Systems.- 3.2.1 The Hot-Wall Beam Epitaxy Growth System.- 3.2.2 Focused Ion Beam Technology.- III Characterization Methods.- 4. In-Growth Characterization Techniques.- 4.1 RHEED.- 4.1.1 Fundamentals of Electron Diffraction.- 4.1.2 Origin of RHEED Features.- 4.1.3 RHEED Data from Reconstructed Semiconductor Surfaces.- 4.1.4 RHEED Rocking Curves.- 4.1.5 RHEED Intensity Oscillations.- 4.2 Ellipsometry.- 4.2.1 Fundamentals of Ellipsometry.- 4.2.2 Ellipsometric Systems Used for In-Growth Analysis in MBE.- 5. Postgrowth Characterization Methods.- 5.1 Survey of Postgrowth Characterization Methods.- 5.2 Auger Electron Spectroscopy.- 5.2.1 Chemical Composition of Solid Surfaces.- 5.2.2 Sputter Depth Profiling.- 5.3 X-Ray Diffraction.- 5.3.1 Diffraction Under Nonideal Conditions.- 5.3.2 High Resolution X-Ray Diffraction.- 5.3.3 X-Ray Diffraction at Multilayers and Superlattices.- 5.4 Photoluminescence.- 5.4.1 Photoluminescence in Binary Compounds.- 5.4.2 Photoluminescence in Ternary and Quaternary Compounds.- 5.4.3 Photoluminescence of Quantum Well Structures and Superlattices.- 5.5 Electrical Characterization.- 5.5.1 Determination of Carrier Concentration and Mobility.- 5.5.2 Deep Level Transient Spectroscopy.- 5.6 Sophisticated Characterization Methods.- 5.6.1 Transmission Electron Microscopy.- 5.6.2 Rutherford Backscattering and Channeling.- IV MBE Growth Processes.- 6. Fundamentals of the MBE Growth Process.- 6.1 General View of the MBE Growth Process.- 6.1.1 Equilibrium States in MBE.- 6.1.2 The Transition Layer Concept.- 6.2 Relations Between Substrate and Epilayer.- 6.2.1 Critical Thickness for the Formation of Misfit Dislocations.- 6.2.2 Role of the Crystallographic Orientation of the Substrate.- 6.2.3 Role of the Substrate Surface Reconstruction.- 6.3 The Near-Surface Transition Layer.- 6.3.1 Physical and Chemical Adsorption.- 6.3.2 Spatial Arrangement of the Near-Surface Transition Layer.- 6.4 Growth Interruption and Pulsed Beam Deposition.- 6.4.1 Recovery Effect During Growth Interruption.- 6.4.2 Growth of Superlattice Structures by Phase-Locked Epitaxy.- 6.4.3 UHV Atomic Layer Epitaxy.- 6.4.4 Migration Enhanced Epitaxy.- 6.4.5 Molecular Layer Epitaxy.- 6.5 Doping During MBE Processes.- 6.5.1 Unintentional Doping.- 6.5.2 Thermodynamics of Doping by Co-deposition.- 6.5.3 Delta-Function-Like Doping Profiles.- 6.5.4 In-Growth Doping with Ionized Beams.- 7. Material-Related Growth Characteristics in MBE.- 7.1 Si and IV-IV Heterostructures.- 7.1.1 Si Substrate Preparation Procedures.- 7.1.2 Homoepitaxy of Si Films.- 7.1.3 Heteroepitaxy of Ge and Sn on Si Substrates.- 7.1.4 GexSi1-x/Si Heterostructures and Superlattices.- 7.1.5 Devices Grown by Si MBE.- 7.2 GaAs- and As-Containing Compounds.- 7.2.1 Preparation of the GaAs(100) Substrate Surface.- 7.2.2 Growth of GaAs on GaAs(100) Substrates.- 7.2.3 Growth of AlxGa1-xAs/GaAs Heterostructures.- 7.2.4 Growth of GaAs on Si Substrates.- 7.2.5 Device Structures Grown by GaAs MBE.- 7.3 Narrow-Gap II-VI Compounds Containing Hg.- 7.3.1 Substrates for MBE of Hg Compounds.- 7.3.2 Hg-Compound Heterostructures Grown by MBE.- 7.3.3 Device Structures.- V Conclusion.- 8. Outlook.- 8.1 Miscellaneous Material Systems Grown by MBE.- 8.2 MBE-Related Growth Techniques.- 8.3 Development Trends of the MBE Technique.- References.