Matrix coefficients of nilpotent lie groups.- Primary projections on nilmanifolds.- Solvability of left invariant differential operators on nilpotent lie groups.- Harmonic analysis on heisenberg type groups from a geometric viewpoint.- On the plancherel formula for almost algebraic real lie groups.- Harmonic analysis on semisimple symmetric spaces a method of duality.- Partial differential equations on nilpotent groups.- Wave equations on homogeneous spaces.- Symbol mappings for certain nilpotent groups.- Lefschetz formulae for hecke operators.- Harmonic analysis on unbounded homogeneous domains in ?n.- Characters as contour integrals.- Analyticity of solutions of partial differential equations on nilpotent lie groups.- Asymptotic properties of eigenvalues and eigenfunctions of invariant differential operators on symmetric and locally symmetric spaces.- Quantum physics and semisimple symmetric spaces.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 26 mm
Gewicht
ISBN-13
978-3-540-13385-8 (9783540133858)
DOI
Schweitzer Klassifikation
Matrix coefficients of nilpotent lie groups.- Primary projections on nilmanifolds.- Solvability of left invariant differential operators on nilpotent lie groups.- Harmonic analysis on heisenberg type groups from a geometric viewpoint.- On the plancherel formula for almost algebraic real lie groups.- Harmonic analysis on semisimple symmetric spaces a method of duality.- Partial differential equations on nilpotent groups.- Wave equations on homogeneous spaces.- Symbol mappings for certain nilpotent groups.- Lefschetz formulae for hecke operators.- Harmonic analysis on unbounded homogeneous domains in ?n.- Characters as contour integrals.- Analyticity of solutions of partial differential equations on nilpotent lie groups.- Asymptotic properties of eigenvalues and eigenfunctions of invariant differential operators on symmetric and locally symmetric spaces.- Quantum physics and semisimple symmetric spaces.