IV - Basic Constructions and Examples.- 1. General setting in co dimension one.- 2. Topological dynamics.- 3. foliated bundles ; example.- 4. Gluing foliations together.- 5. Turbulization.- 6. Co dimension-one foliations on spkeres.- V - Structure of Codimension-one Foliations.- 1. Trans verse orientability.- 2. Holonomy of compact leaver.- 3. Saturated open sets of compact manifolds.- 4. Centre of a compact foliated manifold; global stability.- Charter VI - Exceptional Minimal Sets of Compact Foliated Manifolds; a Theorem of Sacksteder.- 1. Resilient leaves.- 2. The. theorem of Denjoy-Sacksteder.- 3. Sacksteder's theorem.- 4. The theorem of Schwartz.- Charter VII - One Sided Holonomy; Vanishing Cycles and Closed Transversals.- 1. Preliminaries on one-sided holonomy and vanishing cycles.- 2. Transverse follatlons of D2 × IR.- 3. Existence of one-sided holonomy and vanishing cycles.- VIII - Foliations Without Holonomy.- 1. Closed 1-forms without singularities.- 2. Foliations without holonomy versus equivariant fibrations.- 3. Holonomy representation and cohomology direction.- IX - Growth.- 1. Growth of groups, homogeneous spaces and riemannian manifolds.- 2. Growth of leaves in foliations on compact manifolds.- X - Holonomy Invariant Measures.- 1. Invariant measures for subgroups of Horneo (IR) or Homeo (S1 ).- 2. Foliations witk holonomy invariant measure.- Literature..- Glossary of notations.