In this work, Han and Sawyer extend Littlewood-Paley theory, Besov spaces, and Triebel-Lizorkin spaces to the general setting of a space of homogeneous type. For this purpose, they establish a suitable analogue of the Calderon reproducing formula and use it to extend classical results on atomic decomposition, interpolation, and T1 and Tb theorems. Some new results in the classical setting are also obtained: atomic decompositions with vanishing b-moment, and Littlewood-Paley characterizations of Besov and Triebel-Lizorkin spaces with only half the usual smoothness and cancellation conditions on the approximate identity.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Maße
Höhe: 255 mm
Breite: 180 mm
ISBN-13
978-0-8218-2592-1 (9780821825921)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation
Introduction $T_N^{-1}$ is a Calderon-Zygmund operator The Calderon-type reproducing formula on spaces of homogeneous type The Besov and Triebel-Lizorkin spaces on spaces of homogeneous type The $T1$ theorems of $\dot B_p^{\alpha,q}$ and $\dot F_p^{\alpha,q}$ Atomic decomposition of $\dot B_p^{\alpha,q}$ and $\dot F_p^{\alpha,q}$ Duality and interpolation of $\dot B_p^{\alpha,q}$ and $\dot F_p^{\alpha,q}$ References.