A selection of the mathematical writings of Paul R. Halmos (1916 - 2006) is presented in two Volumes. Volume I consists of research publications plus two papers of a more expository nature on Hilbert Space. The remaining expository articles and all the popular writings appear in this second volume. It comprises 27 articles, written between 1949 and 1981, and also a transcript of an interview.
Reihe
Auflage
1983. Reprint 2014 of the 1983 edition
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 18 mm
Gewicht
ISBN-13
978-1-4939-1094-6 (9781493910946)
DOI
10.1007/978-1-4613-8211-9
Schweitzer Klassifikation
[1949 d] Measurable transformations.- [1959 d] Entropy in ergodic theory.- [1961 a] Recent progress in ergodic theory.- [1963 a] What does the spectral theorem say?.- [1963 b] A glimpse into Hilbert space.- [1970 b] Finite-dimensional Hilbert spaces.- [1944 c] The foundations of probability.- [1976 b] American mathematics from 1940 to the day before yesterday.- [1977 b] Bernoulli shifts.- [1978 a] Fourier series.- [1978 b] Arithmetic progressions.- [1978 c] Invariant subspaces.- [1978 d] Schauder bases.- [1978 e] The Serre conjecture.- [1983] The work of F. Riesz.- [1970 a] How to write mathematics.- [1974 b] How to talk mathematics.- [1975 a] What to publish.- [1975 b] The teaching of problem solving.- [1977 a] Logic from A to G.- [1980 c] The heart of mathematics.- [1981c] Does mathematics have elements?.- [1982 e] The thrills of abstraction.- [1957 b] Nicolas Bourbaki.- [1968 d] Mathematics as a creative art.- [1973 a] The legend of John von Neumann.- [1981 b] Applied mathematics isbad mathematics.- Paul Halmos: A maverick mathologist.